
Detecting a Sequential Signal Signature in the Radio Frequency Spectrum

A Thesis

Submitted to the Faculty

of

Drexel University

by

Christopher S. Lester

in partial fulfillment of the

requirements for the degree

of

Master of Science in Electrical Engineering

January 2012

Distribution Statement A—Approved for public release; distribution is unlimited.



c© Copyright 2012
Christopher S. Lester. All Rights Reserved.



ii

Dedications

To Ryan, and all who have served.

Eternal Father, strong to save,

Whose arm hath bound the restless wave,

Who bidd’st the mighty ocean deep

Its own appointed limits keep;

O hear us when we cry to Thee

For those in peril on the sea!

Eternal Father, Faithful Friend,

Be swift to answer those we send

In brotherhood and urgent trust

On hidden missions dangerous;

O hear us when we cry to Thee

For SEALs in air, on land, and sea!

Eternal Father, grant, we pray

To all Marines, both night and day

The courage, honor, strength, and skill

Their land to serve, thy law fulfill;

Be Thou their shield forevermore

From every peril to the Corps.

Eternal Father, Lord of Hosts,

Watch o’er the men who guard our coasts;

Protect them from the raging seas

And give them light and life and peace;

Grant them from Thy great throne above

The shield and shelter of Thy love.

Lord, guard and guide the men who fly

Through the great spaces in the sky;

Be with them always in the air,

In dark’ning storms or sunlight fair;

O hear us when we lift our prayer

For those in peril in the air!



iii

Acknowledgements

The work contained in this thesis is a compilation of several related lines of research

that were performed by members of the Data Fusion Laboratory at Drexel University

from 2008 to 2010. Each subject covered in this document was part of a larger effort,

undertaken as part of a research project conducted by Drexel University.

Individuals who contributed to the content compiled in this document include (in

alphabetical order): Bradford Boyle, Raymond Canzanese, David Dorsey, Gabriel Ford,

Christopher Lester, Ryan Measel, and Richard Primerano. Supervising faculty included:

Moshe Kam, Kapil Dandekar, and John Walsh.

Finally, I must also thank those around me who provided the encouragement I needed

in order to see this thesis through to completion. Without the loving support of my wife,

Ashley, and that of the rest of my family, this thesis would still remain uncompleted.



iv

Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Defining the Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Development of the Solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Pseudo-code Algorithms in this Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. Signal Detection and Classification System Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Basic classification problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Low level features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Higher level features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 General System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Physical Tuners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.7 Target Signal Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.8 Simple Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.9 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.9.1 Implementation of the Physical Tuners Subsystem . . . . . . . . . . . . . . . . . . 20

2.9.2 Implementation of the Feature Extraction Subsystem . . . . . . . . . . . . . . 21

2.9.3 Implementation of the Target Signal Detection Subsystem . . . . . . . . . 22

2.9.4 Implementation of the Controller and GUI . . . . . . . . . . . . . . . . . . . . . . . . . . 24



v

3. Feature Extraction Exemplified Through DTMF Detection . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Overview of DTMF and DTMF Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Fast and Automatic DTMF Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 The Optimal Parameter Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Optimal Amplitude Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Numerical Solution for Frequency and Phase Parameters . . . . . . . . . . . . . . . . . . . 35

3.5.1 Gauss-Newton Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5.2 Step-size Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.3 Full vs. Reduced Parameter Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Determining DTMF vs. non-DTMF .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.7 Empirical Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.8 Detector Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.8.1 DTMF Key Identification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.8.2 DTMF Detection Algorithm.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.9 Non-Ideal DTMF: Frequency Deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.10 DTMF Feature Extraction Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4. Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Linear Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Linear Classifiers in Radio Frequency Communications . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Computing the Weight Vector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Extension to Multiple Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Sequential Nature of Target RF Communication Events . . . . . . . . . . . . . . . . . . . . 59

4.5 Profile Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6 Example with PHMMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A. Full List of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



vi

List of Tables

3.1 DTMF frequency table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 DTMF parameters for empirical distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Maximum recommended frequency variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Sampling of the more than 36, 000 signals that were observed during system

testing and used for training and testing the linear classifier . . . . . . . . . . . . . . . . . . . 57



vii

List of Figures

1.1 Fundamental blocks of the signal sequence detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Partial timeline depicting activity between two or more hijackers in the 9/11
terrorist attacks. Increased activity in the whole network is indicative of the
impending attack [30]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 General architecture of an RF signal detection system . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 General decomposition of the physical tuners subsystem. . . . . . . . . . . . . . . . . . . . 11

2.3 General decomposition of the feature extraction block . . . . . . . . . . . . . . . . . . . . 13

2.4 General decomposition of the target signal detection subsystem . . . . . . . . 14

2.5 Operational flow diagram of the RF signal detection system . . . . . . . . . . . . . . . . . . . 16

2.6 Block diagram of one implementation of the target signal detection system . . 20

2.7 Operational flowchart through the feature extraction block . . . . . . . . . . . . . . 21

2.8 Operational flowchart through the target signal detection block . . . . . . . . 23

3.1 Definition of observation window. Top graph shows original signal, continu-
ously observable. Bottom graph shows the same signal as observed through
the time window (shaded regions) with length Tw. The duty cycle of the
observation window is the ratio of the length of time when the signal can be
seen to the total length of the window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 A DTMF tone is depicted at various stages in the estimation process. The
top plot shows the original DTMF signal as it would be received if there
were no windowing effects. The second plot shows the effects of applying the
window to the signal. The third plot shows the result of concatenating the
look-through portions of the windowed signal. The last plot shows the result
of overlaying the original signal with the minimum mean squared error best
fit waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Representative empirical distributions of εn(θ∗) for the case where there is
amplitude imbalance but the frequencies are fixed at the values specified
for each subfigure. Increasing the value of every parameter increases the
separation in the two distributions, making the decision between accepting
H0 or H1 easier and thus resulting in better detector performance. . . . . . . . . . . . 41

3.4 ROC curves for the DTMF detector as a function of window length Tw . . . . . . 42



viii

3.5 ROC curves for the DTMF detector as a function of duty cycle τ . . . . . . . . . . . . . 42

3.6 ROC curves for the DTMF detector as a function of SNR.. . . . . . . . . . . . . . . . . . . . . 42

3.7 DTMF detector’s key identification performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.8 ROC curves for the DTMF detector with the non-ideal effect of frequency
deviation (sinusoid frequencies uniformly distributed ±1.8% about nominal) . 47

4.1 Black and White signals in 2-space with 3 discriminant functions. H3

doesn’t separate the 2 classes. H1 does but with a small margin while H2

separates Black from White with the maximum margin. . . . . . . . . . . . . . . . . . . . . . 50

4.2 Diagram of the linear classifier. The classifier has d input units corresponding
to the values of the features of a measured communication. Each input
feature xi is multiplied by its corresponding weight wi. The single bias unit
always emits a value of 1. The final output unit g(x) emits a +1 if wTx > 0
and a −1 otherwise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Two-dimensional projections of the 7-dimensional feature space. Non-target
signals are shown as blue asterisks, while target signals are shown as red
squares. Any linear discriminant function will result in misclassifying either
some target signals, some non-target signals, or both, due to the overlap of
the two classes of signals in every feature subspace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Example of a multi-layer perceptron. All inputs xi feed into individual per-
ceptrons with distinct weights and thresholds for each perceptron (left half).
The outputs of these perceptrons can then be used as inputs to a second
layer of perceptrons (right half). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Profile Hidden Markov Model. Each square block represents a “match”
state (Mj), where that state represents one stage of the target signature.
The number of match states is equal to the number of steps in the target
signature. Between each match state are (optional) diamond blocks (Ij),
representing inserted signals between each match state. A path through
circular blocks (Dj) is also present, representing deleted or skipped match
states that were not observed. Each arrow represents the manner in which
flow may move from one block to another; the model includes a probability
associated with each arrow.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



ix

4.6 Profile Hidden Markov Model classifier test results. The vertical axis shows
the log-likelihood ratio of the likelihood of the target signature model having
generated the observed data to the likelihood of the background noise model
having generated the observed data; the higher the value, the more likely
it is for the observed data to contain the target signature. The three dot-
ted “Original Training Set” series show the results of running the classifier
on data used to train the target signature model. The “Testing Set with
Complete Signature” is a unique series collected in the same manner as the
training sets but not used in training. The three “Incomplete Testing Set”
series represent data that were collected with the attributes shown (portions
of the target signature were intentionally omitted when collecting the data),
while the “Complete Testing Set with Third Event Removed” represents all
the same data as the first “Complete” testing set except for the signals com-
prising the third event, which have been manually removed from the data
set. The “Background Testing Set” is a representation of data that was col-
lected in the same environment as the other data but without any signals
from the target signature present. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



x

List of Algorithms

2.1 Programmatic description of the Controller functionality . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Time domain Dual-Tone Multi-Frequency detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Least-Squares Error linear classifier training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Linear classification process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



xi

List of Acronyms

Page where
first used:

AM Amplitude Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

AoA Angle of Arrival . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

ASK Amplitude Shift Keying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

AWGN Additive White Gaussian Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

DTMF Dual-Tone Multi-Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

FCC Federal Communications Commission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

FFT Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

FM Frequency Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

FSK Frequency Shift Keying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

GPS Global Positioning System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

GUI Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

HMM Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

IQ In-phase and Quadrature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

ITU International Telecommunication Union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

LMMSE Linear Minimum Mean Squared Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53

LSE Least-Squares Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54

MLP Multi-Layer Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

MSDD Miniature Software Defined Digitizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

PSD Power Spectral Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

PTT Push To Talk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

PHMM Profile Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

PSK Phase Shift Keying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



xii

QAM Quadrature Amplitude Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

RF Radio Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

ROC Receiver Operating Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40

SNR Signal to Noise Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

UHF Ultra High Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

ULS Universal Licensing System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

USB Universal Serial Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

VHF Very High Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



xiii

Abstract
Detecting a Sequential Signal Signature in the Radio Frequency Spectrum

Christopher S. Lester

Advisor: Moshe Kam, Ph. D.

We outline algorithms and methods that are useful in identifying and detecting the

presence of a particular signal of interest in a noisy Radio Frequency (RF) environment.

We define a signal of interest as having particular RF features (e.g., frequency or band-

width) dictated by the equipment and the standard used to generate the signal. We

formulate the concept of a target RF communication sequence signature which defines

a specific sequence of communication signals, then use this concept to explore methods

of detecting sequences of signals of interest. We present a review of features that would

be useful in performing signal classification, and outline a methodology for extracting

a particular feature (DTMF audio) from a signal. This methodology is useful in per-

forming feature extraction for other similar features. Finally, we demonstrate that the

Profile Hidden Markov Model method would be capable of handling the classification

requirements of the studied scenario.
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1. Introduction

As the popularity of wireless communication devices grows, with unprecedented

numbers of individuals and businesses operating radios, cell phones and sensors, it

becomes increasingly difficult to detect and demodulate a particular signal of interest

in the Radio Frequency (RF) environment [29, 13]. Here, “signal of interest” is a

generic term referring to any RF transmission that is desired to be separated from

the background RF environment. The techniques outlined in this document have been

developed in an effort to identify (detect) the presence of a particular signal of interest

and to aid in its demodulation.

The main objective of this work is to outline algorithms and methods that have been

developed to improve this detection process. The methods presented here may be used

to implement an automated signal detection system. Recent developments in cognitive

radio systems could benefit from this work by separating useful signals from unwanted

signals in the environment [21].

1.1 Defining the Problem

Many scenarios exist where knowledge of specific patterns of communication repre-

sents actionable evidence. Law enforcement monitoring of illegal drug or arms dealings

depend on the communications between dealers and buyers. Increased traffic on certain

networks may be indicative of rapid changes in supply and demand of commodities,

preceding economic, health or financial crises (e.g., [9, 31]). When the communications

enter the realm of wireless devices, the problem often requires separating those signals

representing the “targeted communications” from communications that are present due

to non-targeted users operating over similar or identical means as those users who are

targeted. While it may be easy in some circumstances for a human being to identify

signals that would naturally be considered part of the same “conversation” or com-
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munications scenario, we are seeking automated means that would detect “targeted

communications” with little or no human interaction.

The solution set forth in this document seeks to outline a general method for de-

tecting a particular sequence of signals amidst other signals and noise. In doing so, a

sequence, or a series of transmissions, is identified by properties that are known about it

a priori. These properties are assembled to form a signature that describes all sequences

matching a particular pattern.

In this study, the signal of interest is not a single transmission in time; rather, it

is comprised of transmissions from multiple sources that may not have identical char-

acteristics. Here we consider the case where single transmissions are, by themselves,

unremarkable; they become signals of interest when they appear along with other sig-

nals in some interrelated sequence or order.

In order to be compatible with various systems that might be able to take advan-

tage of our detection schemes, it is desired that our solution be modular. It should

be possible to insert the solution wholly into another signal processing system as the

stand-alone signal detection module. Additionally, we seek real time operation. The

module should indicate when it has detected particular communications of interest. We

also seek a confidence level associated with each detection and, to the extent possible,

the reasoning behind the detection indication. The solution should have high quality

detection performance (as measured by receiver operating characteristics or confusion

matrices), and be capable of operating over a wide range of frequencies and accepting

input from a wide range of RF equipment.

A diagram of the fundamental parts of the system is depicted in Figure 1.1 on the

following page. The initial input to the system comes from the RF environment; signals

from the RF environment are picked up by a tuner, which provides low level inputs to

the detector (e.g., center frequency, bandwidth, In-phase and Quadrature (IQ) data).

These low level inputs are processed in a feature extraction block in order to obtain

higher level inputs to the detector (e.g., modulation type, radio service to which signal
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Figure 1.1: Fundamental blocks of the signal sequence detector

belongs). Both the low and high level inputs are passed to the detector, which provides

as output whether a target signature was detected (along with its confidence of this

decision and an indication of how the decision was reached).

Several examples of the importance of analyzing communication sequences are pro-

vided in [4] and its references. In these studies it is shown that simple frequency counts

of communications between members of a team are not sufficient to understand the

collaborative element of a team and that additional study of communication sequences

can provide the missing data which characterize better versus worse performing teams.

An extreme example of the kind of patterns we are looking for is provided by the

analysis of communications between perpetrators of the 9/11 terrorist attacks [30]. Here

a communication event between any two members of the plot is of low significance,

whereas the increased activity in the whole network is potentially an indication of im-

pending illicit activity (see Figure 1.2 on the next page).

1.2 Development of the Solution

The detection scheme is made up of a series of discrete steps. First, the RF envi-

ronment must be observed and analyzed. While decisions cannot be made from a single

snapshot of the RF environment, individual snapshots make up the input to more com-

plex detection schemes. Features must be estimated for each signal that is seen in each

snapshot of the environment in order to distinguish it from other signals, and to identify
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Figure 1.2: Partial timeline depicting activity between two or more hijackers in the 9/11
terrorist attacks. Increased activity in the whole network is indicative of the impending
attack [30].

it in the context of a sequence of expected signals.

Second, features that have been estimated at each time step are processed to de-

termine whether a target sequence exists in the observed environment. Through this

processing, a confidence indicator is developed.

1.3 Pseudo-code Algorithms in this Text

Various algorithms and programmatic ideas are presented throughout this text in

pseudo-code form. They are not intended to run or compile in any particular program-

ming language, but are meant as an aid in developing code to reproduce the techniques

described here.
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1.4 Terminology

For the purposes of discussing the detection of certain signals, we will use the fol-

lowing terms as defined below.

Communication event An instance of a particular RF communication

signal as observed in the RF environment.

Sequence A series of distinct communication events occurring in some

(any) pattern over a period of time.

Signature A description of the set of all sequences conforming to a par-

ticular pattern.

Target sequence A particular sequence matching the signature being

used for detection.

Target signal A constituent signal of a target sequence.

Non-target sequence/signal Any sequence/signal not matching the sig-

nature being used for detection.

1.5 Organization

The remainder of this thesis is organized as follows. In Chapter 2 (Signal Detection

and Classification System Architecture), we describe the feature vectors that are used to

characterize RF signals, and the architecture of the classification system that we propose

to identify target sequences in the RF environment. Chapter 3 (Feature Extraction

Exemplified Through DTMF Detection) continues with an in-depth review of extracting

a particular feature (Dual-Tone Multi-Frequency (DTMF)) from a signal in order to

use that feature for signal classification. Finally, we examine several forms of classifiers

in Chapter 4 (Classification), and propose the use of a Profile Hidden Markov Model

(PHMM) for use in our system.
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2. Signal Detection and Classification System Architecture

In order to look for patterns or signatures in Radio Frequency (RF) emissions that

would match the signature of a known communication sequence, it is necessary to cap-

ture a description of the state of the RF environment. The method we have developed

uses a feature vector to describe an observed emission; this vector is passed as an input

to the appropriate classification algorithm. The classifier makes a decision as to the

presence of signals that match the target signature based on the sequence of observed

feature vectors.

2.1 Basic classification problem

The RF classification problem consists of identifying particular RF signals and de-

termining to which class they belong, based on features of the signal. Here, a class

might be the basic modulation type of the signal (that is, whether the modulation is

analog or digital), it might identify the particular modulation of the signal (whether

the signal is Amplitude Modulation (AM) or Frequency Modulation (FM)), or indicate

whether the signal belongs to a user in a known group of users (indicating membership

in the class of commercial radio broadcasters). The decision regarding to which class (or

classes) a signal belongs is the output of a classification model. Based on this output,

one might take a particular action, e.g., switch a receiver to a mode more suitable to

processing the signal.

2.2 Features

A variety of features can be used to describe the RF signals that we wish to classify.

The performance of our classification algorithms is determined by the specific features

that are chosen. Some features will be inherently better at discriminating between

different signal classes, depending on the performance index.
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Listed here are some features that might be useful in an automatic classification

system for RF signals. Some of these are easy to measure and there exists hardware

and/or techniques for measuring them. Others are significantly more difficult to capture

and may even entail a protocol-specific exploitation. For a more complete list, see

Appendix A.

2.2.1 Low level features

We define low level features to be those features that require very little processing.

These features require little to no inference about the signal and are obtainable without

demodulation of the signal. Examples of low level features include:

Center Frequency – The measured center frequency of an observed signal.

Bandwidth – The measured bandwidth of an observed signal.

Received Power – The total received power within the specified bandwidth.

Knowledge of basic, low level features gives the fundamental means by which one

might determine the uniqueness of a particular RF signal. Furthermore, the number of

transmitters and sometimes even their locations can be estimated from this information.

It is usually possible to estimate a low level feature without knowledge of any other

features.

2.2.2 Higher level features

Higher level features are more specific to the user behind the RF emission. Examples

of higher level features include:

Device Type – One-way versus two-way radio, commercial or home-built.

Radio Service – Radio service to which the communication event belongs.

Dual-Tone Multi-Frequency (DTMF) Key-press – Specific DTMF tone

present in communication event, if any.
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Higher level features usually require more processing power to estimate than low

level features. Additionally, it is usually necessary to already have an estimate of other

features in order to obtain a higher level feature.

2.3 Feature selection

While many features can be used to describe RF emissions, the computational ef-

fort to obtain some of these features is too great for them be of practical use. Other

features, while relatively easy to obtain, are less discriminatory. The challenge is to

identify a subset of all possible features that is both measurable and provides an ac-

curate representation of the signal for the task at hand. For example, certain features

(such as center frequency) are relatively easy to measure in a short amount of time.

Other features (such as modulation type) require the receiver to stare at a particular

emission for an extended period time, the result of which is that other emissions may

be left unobserved.

While many of these higher level features are more costly to determine, both in terms

of computational power and time, they have the potential to be more discriminating

features than some of the lower level features. Consider that, while it is beneficial to

know that there is an RF signal operating at 500 MHz, it is much more meaningful

to say that the device operating at 500 MHz is probably a home-built FM transceiver,

versus a (perhaps commonly available) commercial radio. The more detail that one can

discern from the RF signal, the more precise the target signature that one can construct

for performing RF classification.

The rest of this chapter describes the general architecture of a signal classification

system that takes as its input a subset of the features just described and makes a

determination as to whether a detected RF communication event is benign or is part

of a target sequence.
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Figure 2.1: General architecture of an RF signal detection system

2.4 General System Architecture

The signal detection system consists of three main components as outlined below. A

diagram of the system architecture as it relates to data flow among the blocks is shown in

Figure 2.1. An alternative depiction of the system from an operational flow perspective

appears in Figure 2.5 on page 16 along with a simple example of the operation of the

system.

1. physical tuners block

Function: Monitor the RF environment, provide initial raw data

Input: RF signals from the environment

Output: (1) In-phase and Quadrature (IQ) data, (2) environmental information,

and (3) pre-supplied expert knowledge

2. feature extraction block

Function: Process raw data and provide a vector of features that describe each

observed RF emission

Input: Raw data from the physical tuners block

Output: For each RF signal present in the raw data, a vector containing features

that describe that signal



10

3. target signal detection block

Function: Determine, based on a statistical model, whether an observed RF

emission is benign or part of a target sequence

Input: (1) Vectors of features generated by feature extraction block, from

a database, and (2) target signature model definitions

Output: (1) Decision of whether any target sequence is present, (2) confidence

levels for decision, and (3) mapping from target sequence components to

target signature components

The first two blocks process data successively in a continuous loop, with the feature

extraction block writing vectors of features to a database for each signal that is

detected. Meanwhile, the target signal detection block operates independently,

utilizing all of the data that has been collected. In order to control the computational

complexity of the detection problem and to operate with finite storage capacities, in

practice we discard data older than five minutes, using only recent data in the detection

problem.

The following sections provide a detailed look at the makeup of each of these com-

ponents.

2.5 Physical Tuners

The physical tuners block provides information about the physical environment

necessary for the feature extraction block to extract the features described in

Section 2.2. The components that comprise the physical tuners block are shown in

Figure 2.2 on the following page.

The input to this subsystem comes from the environment and returns real-time

IQ samples and/or spectral density information. The physical tuners block may

comprise either a single physical tuner or an array of physical tuners. Each tuner is

connected either to a single antenna or to an array of antennas that monitor the RF
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Figure 2.2: General decomposition of the physical tuners subsystem

environment. Since the system must monitor all frequencies of interest, the tuners either

• are configured to monitor multiple smaller bands sequentially,

• are used in large quantities with each tuner monitoring a different band, or

• are capable of receiving sufficiently wide-band signals so as to cover the entire

range of interest.

Sometimes, a combination of these three features will be used to monitor the bands of

interest.

In addition to RF tuners, the physical tuners block may also include other sen-

sors that provide non-RF information about the physical environment. These sensors

include Global Positioning System (GPS) receivers that can be used to provide location

information for each physical tuner or antenna we are using. Other physical sensors

might include optical sensors, ultrasonic sensors, or metal or radiological detectors.

A signal detection system can also use expert knowledge as an input to the sys-

tem. For instance, a human operator may make the determination based on his or her

own experience and observations that a particular situation or signal should be classi-

fied as a target signal, even though it does not otherwise match a preidentified target
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signature. Furthermore, in certain areas, agencies like the Federal Communications

Commission (FCC) of the United States collect and make available to the public infor-

mation regarding licensed use of the radio spectrum,1 which could be used as a different

form of expert knowledge.

The physical tuners subsystem provides as output (1) information about the RF

environment provided by the tuners, (2) information about the physical environment

provided by additional sensors, and (3) expert knowledge provided by human operators

and automated databases.

2.6 Feature Extraction

The feature extraction block processes the data provided by the physical

tuners block and delivers as output vectors of features that describe observed RF

emissions and communications. Figure 2.3 on the next page shows the structure of the

feature extraction block. The operation of this block is split into the following two

stages.

Stage 1 of the block first detects RF emissions present in the data. This is ac-

complished through energy peak detection, where consecutive peaks of approximately

the same amplitude are clustered together and denoted as a single signal.2 Once a set

of emissions is detected, the system continues to estimate low-level parameters such as

center frequency, bandwidth, and received power for each one of them. Next, the system

might perform direction finding or localization. These parameters are then combined

1The FCC provides this service in the United States through several online resources. The FCC
Spectrum Dashboard provides a web browser interface to search and browse graphically through the
various spectrum bands or via a map [10]. Similar information is also provided through the Universal
Licensing System (ULS), which provides for large-scale database exports of licensee information based
on a variety of parameters [11].

2This represents a limitation of the system, as it is conceivable that we could detect two signals close
enough together in frequency that we would identify it as a single signal. For our purposes, however,
we assume that such occurrences are rare, as we would expect the interference that such a situation
would result in to prompt a change in operating behavior for one or both transmitters. Moreover, it
would be exceedingly rare for two such signals to cycle “on” and “off” with sufficient synchronization
for us to be unable to detect the presence of two separate signals.
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Figure 2.3: General decomposition of the feature extraction block

with the estimated receiver location, time of emission, and additional information from

the physical environment sensors or from expert knowledge.

Stage 2 begins after the low-level features of a signal have been determined. This

stage involves extracting higher-level features that are required for the task at hand,

such as identifying modulation type or channel usage information (e.g., whether the

demodulated signal contains voice/phone transmissions, data, or DTMF). Computa-

tions performed in this stage are typically more computationally expensive than those

performed in Stage 1 that gathered the low-level features.

As indicated in Figure 2.3, elements of Stage 2 may use a database containing de-

scriptions of both target and non-target devices and signals. For example, the database

can contain information that describes the radios and devices used by local law enforce-

ment for communication, or designated geographic areas that do not require attention.

The database may also contain licensing information, such as the information from the

FCC Universal Licensing System (ULS) database [11]. This information allows the sys-

tem to search for the licensing information for detected signals based on the observed
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features, and verify whether the measured spectral characteristics of a detected signal

conforms to a published license or standard. For example, if a detected signal does not

conform to its published standards (e.g., the received power is too high or the bandwidth

is incorrect), the signal could be labeled as suspicious, or flagged for manual review. The

output of the feature extraction block is a vector of the extracted features for each

detected RF emission.

2.7 Target Signal Detection

The final stage of the detection process is to perform target signal detection based

on the features that have been extracted.

Figure 2.4 shows the structure of the target signal detection subsystem. This

subsystem has as its input the database of all feature vectors generated by the fea-

ture extraction module and provides as output a decision as to whether any target

sequence is present, along with a confidence of the decision and a mapping to identify

the signals that make up the sequence.

The objective of the target signal detection block is to use the feature vectors

and temporal relationships of detected RF signals to determine the absence or presence

of a target sequence based on a statistical model. This target signature model can
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describe either scenarios that should result in a positive detection or those that should

preclude a positive detection. The model defines a sequence of signals in terms of the

extracted features and the temporal sequences in which they occur. For example, the

model would describe signals A, B, and C in terms of their frequency, bandwidth and

modulation type (or any other subset of extracted features), and then describe a target

sequence in terms of a temporal pattern. This pattern could be “signal A appearing for

at least 15 seconds, followed by signals B and C appearing at some point simultaneously

within 2 minutes of signal A’s appearance.” The form of this model is further clarified

in the example of Section 2.8 on the following page.

The target signature model parameters can be obtained in one of two ways. The

first method is to perform model training. This method begins with arbitrary model

parameters that are adjusted to best fit a collection of data that has been identified as

the desired target sequence. As an alternative to model training, the parameters may

be manually set by an expert based on previous experience and knowledge of the target

sequence. For a detailed discussion of the model development and design process, see

Chapter 4.

Several components make up the target signal detection block (as shown in

Figure 2.4 on the previous page). The first element of the target signal detection

block is a likelihood calculation, where the presence or absence of the target sequence is

assessed based on the target signature model. The second element of the block identifies

the specific sequence of signals within the input data that cause a positive detection.

In addition to the actual indication of a detection, the output of the target signal

detection block also includes the likelihood value that indicates the level of confidence

in having made a correct detection. Furthermore, the target signal detection

block also provides a mapping from the target signals to the position in the target

sequence that was detected. In the event of detection being performed for multiple

target signatures simultaneously, an identifier for the matching target signature would

also be supplied. The output of target signal detection is intended to be suitable for
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Figure 2.5: Operational flow diagram of the RF signal detection system

display to a human user for verification or initiation of an appropriate response.

2.8 Simple Example

The following paragraphs exemplify the operational flow of the system (depicted in

Figure 2.5) for a simple scenario. The specific numbers given in this section are all

hypothetical; in particular, the confidence numbers that are provided here are an ab-

straction of the log-likelihood ratio output from the classifier as discussed in Section 4.6

on page 63.

When the system starts, the database is empty of feature vectors, but has been

seeded with the definitions for several target signature models, including one called

Signature, which has been defined as

Signature :=


Signal-A for at least 5 seconds, followed by

Signal-B for at least 5 seconds, followed by

Signal-C for at least 5 seconds,

 occurring in 45 secs.

The signals Signal-A, Signal-B, and Signal-C are also then defined in terms of their
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features, including Angle of Arrival (AoA), as

Signal-A := 〈Freq=100 MHz, Bandwidth=10 kHz, AoA =∗〉

Signal-B := 〈Freq=300 MHz, BW=1 MHz, AoA =[Signal-A’s AoA]〉

Signal-C := 〈Freq=100 MHz, BW=10 kHz, AoA 6=[Signal-A’s AoA]〉 .

The definition of Signature indicates that an alert should be triggered if a target

sequence is detected that matches the sequence of events laid out. A small subset of

features has been used to define the particular signals that would comprise this sequence.

After the start of the system, Loop 2 will begin in the “Wait for new data” sleep

process until the database has new data for the detector to begin processing. Loop 1

begins the data collection process with the physical tuners block gathering IQ data

and information from other sensors.

The first data collected from the tuners is passed along to the feature extraction

block. The data is processed in this block and peak detection discovers two signals:

Signal-R = 〈ID=R, Begin=0, Freq=150 MHz, BW=6 kHz, AoA =180◦〉

Signal-S = 〈ID=S, Begin=0, Freq=100 MHz, BW=10 kHz, AoA =300◦〉

These two feature vectors (the output from the feature extraction block) are ap-

pended to the database and then Loop 1 cycles back to the tuners to acquire another

set of data. Each time through the loop, the feature extraction block checks to see

that these signals remain; when they cease to be present, an ending time attribute will

be added to the entry in the database.
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This process continues, building up the following database of feature vectors:

〈 ID=R, Begin=0, End=9 Freq=150 MHz, BW=6 kHz, AoA =180◦ 〉

〈 ID=S, Begin=0, End=8 Freq=100 MHz, BW=10 kHz, AoA =300◦ 〉

〈 ID=T , Begin=3, End=6 Freq=160 MHz, BW=15 kHz, AoA =345◦ 〉

〈 ID=U , Begin=12, End=20 Freq=300 MHz, BW=1 MHz, AoA =300◦ 〉

〈 ID=V , Begin=19, End=21 Freq=120 MHz, BW=10 kHz, AoA =225◦ 〉

〈 ID=W , Begin=21, End=58 Freq=250 MHz, BW=1 MHz, AoA =180◦ 〉

〈 ID=X, Begin=26, End=35 Freq=330 MHz, BW=200 kHz, AoA =45◦ 〉

〈 ID=Y , Begin=33, End=35 Freq=100 MHz, BW=10 kHz, AoA =135◦ 〉

〈 ID=Z, Begin=38, End=44 Freq=100 MHz, BW=10 kHz, AoA =90◦ 〉

Each time one of the feature vectors is appended or modified in the database, Loop 2

breaks out of its sleep process and runs the target signal detection subsystem on

the most recent set of data that has been collected. The detection subsystem first

determines a likelihood value for whether the Signature pattern is contained in the

data. A visual inspection of the vectors above would indicate that there are 3 signals

(S, U , and Z) that exactly correspond to Signal-A, Signal-B and Signal-C from the

Signature pattern. Consider the output of the subsequent runs of the target signal

detection subsystem.

Initially, when the detector runs, it sees just two signals, R and S. It can identify

that one of the three components of Signature is present in the data: S matches

Signal-A perfectly. The computed confidence is 10%. By time 6, the detector is able to

produce the following output:

T=6, Sig=Signature, Conf=10%, Signal-A → S, Signal-B →nul, Signal-C →nul

At time 20, the detector sees signals R through V (though V has not yet ended).

The confidence rises to 35%, as the detector now can see two signals (S and U) that
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match the first two components of the Signature. The output at this time step is:

T=20, Sig=Signature, Conf=35%, Signal-A → S, Signal-B → U , Signal-C →nul

At time 35, the detector can see all but the last signal. The confidence has risen to

90%. While there is a match for all three signals (note that Y has all the parameters

needed to be Signal-C), the duration of Y has not met the criteria to fully match the

Signature. The detector recognizes that the match is not perfect (this is reflected in

the confidence level), while at the same time detecting that a sequence nearly similar

to the one defined by the Signature is present.

T=35, Sig=Signature, Conf=90%, Signal-A → S, Signal-B → U , Signal-C → Y

At time 44, the detector finally sees Z, and raises its confidence to 100%. The

Signature definition has been perfectly matched.

T=44, Sig=Signature, Conf=100%, Signal-A → S, Signal-B → U , Signal-C → Z

Both operational loops continue in a similar manner until the entire system process

is terminated.

2.9 Implementation

Figure 2.6 on the following page shows a block diagram of one possible implementa-

tion of the target signal detection system. It consists of the physical tuners, feature

extraction and target signal detection blocks as shown in Figure 2.1 on page 9,

along with a controller for coordinating the execution of the system and a Graphical

User Interface (GUI) where the output of the system is presented.

For the purposes of testing the algorithms presented in this work, code was developed

in matlab and was designed to run on commercial PC hardware. The rest of the
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Figure 2.6: Block diagram of one implementation of the target signal detection system

equipment is likewise commercially available hardware, including:

• Softronics Miniature Software Defined Digitizer (MSDD)-3000 software defined

radio tuner, capable of tuning to frequencies in the 30-3000 MHz range [23],

• BU-353 Universal Serial Bus (USB) GPS receiver [14], and

• Dell Mobile Precision M4500 laptop running Microsoft Windows 7 [7].

The MSDD-3000 tuner and the GPS receiver comprise the physical tuners block,

with the feature extraction and target signal detection blocks running in

matlab.

2.9.1 Implementation of the Physical Tuners Subsystem

The system uses a BU-353 GPS receiver and a Softronics MSDD-3000 software de-

fined radio tuner as its physical tuners. The BU-353 receiver provides the GPS

location of the receiver antenna while the MSDD-3000 tuner provides both power spec-

tral density data and real-time IQ samples. The MSDD-3000 tuner is capable of tuning

to frequencies from 30 MHz to 3000 MHz. The system uses the tuner to sequentially
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Figure 2.7: Operational flowchart through the feature extraction block

monitor user-specified frequency ranges and pass the data to the feature extraction

block.

The output of the physical tuners is comprised of:

• power spectral density data,

• real time IQ samples, and

• the GPS coordinates of the receiver.

2.9.2 Implementation of the Feature Extraction Subsystem

The feature extraction subsystem consists of algorithms used for extracting the

features of each detected signal. Figure 2.7 shows a flowchart of the execution of this

subsystem.

First, the subsystem requests wide-band Fast Fourier Transform (FFT) data from

the physical tuner. The FFT envelope is then compared to a configurable threshold,
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MDSWB, which represents the minimum detectable signal able to be received by

the tuner in its wide-band configuration. Portions of the FFT that exceed MDSWB

are designated as RF emissions, and the system estimates the bandwidth and center

frequency for these signals.

The estimates of center frequency and bandwidth are refined by requesting narrow-

band FFT data from the tuner (obtained through decimated sampling). The resulting

FFT envelopes are analyzed in the same manner as the wide-band envelopes, this time

comparing with MDSNB, a threshold adjusted for the minimum detectable signals at

the decimated sampling rate. The center frequency and bandwidth are estimated again

from these “zoomed in” data.

Once the final estimates of center frequency, bandwidth and power for each detected

signal have been made, the feature extraction subsystem requests additional IQ

data from the tuner in order to perform additional feature extraction, in particular

DTMF detection.

The output of this block is a vector of features that characterizes each detected

signal. The list of features and a description of each feature follows. These are:

Time – the time the signal was observed

Center Frequency – the estimated center frequency

Bandwidth – the estimated half-power bandwidth

Power – the received power

DTMF – whether a DTMF tone was detected and the detected DTMF

key-press (if applicable)

Location – the GPS location of the receiver at the time that the RF emis-

sion was detected.

2.9.3 Implementation of the Target Signal Detection Subsystem

The target signal detection subsystem uses the feature vectors output by the

feature extraction subsystem to determine whether a sequence of detected signals
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Figure 2.8: Operational flowchart through the target signal detection block

contains a known target signature. The basic flow within this subsystem is depicted in

Figure 2.8. The target signal detection subsystem includes three main processes,

Feature Filtering , Classification and Localization. Once the system is started, the

data input vectors are loaded from the database. These data are then passed through

the Feature Filtering process, where known non-target signals are filtered out based on

expert knowledge that has been input into the system.

After filtering the data, the reduced dataset is passed to the Classification subsystem.

This block determines whether the signals in the observed data form any of the patterns

described by the target signatures that we are matching against. A log-likelihood ratio

is calculated for each target signature, which is a measure of the likelihood that the

observed data were generated by a model that contains the signature.3 The current im-

plementation of the Classification subsystem is a profile Hidden Markov Model (HMM).

More detailed information about classification algorithms is included in Chapter 4.

The Classification process operates with a degree of flexibility when alerting to target

sequences matching a target signature. It is possible that a sequence loosely matching a

target signature (perhaps differing by one feature from the signature definition) would

3A log-likelihood ratio is a quantity used in comparing the relative probabilities of two hypotheses
given a particular observed result. See the more detailed discussion of this quantity in [8].
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be identified as a target sequence. As a result, even though the exact sequence defined

by the target signature may not be present, the system can still alert to a target sequence

if the confidence level meets the configurable threshold.

The Classification process is only capable of indicating whether or not a target

sequence is present in the data (a binary output). If a target sequence is determined

to be present, the system proceeds to identify which signals in the data comprise the

sequence to which we are alerting. The Localization process goes back through the

reduced dataset and identifies the particular signals that are the best match to the

target signature. The identity of these signals is provided among the output of the

subsystem.

If it is determined that no target sequence is represented in the current data (or

that we are not confident enough that a sequence is present), the subsystem outputs

informational data to that effect.

Regardless of whether or not a target sequence was detected, the subsystem then

loops back to repeat the entire process with taking in new input from feature ex-

traction.

Since the system may be configured to search for more than one target signature,

this detection process may occur multiple times in parallel over the same data set. The

output of the target signal detection block indicates for each signature whether

a target sequence was detected, along with the signals that were identified as part of

that sequence. This output includes a mapping from each of the individual signals to

the portions of the target signature that each signal corresponds to.

2.9.4 Implementation of the Controller and GUI

The final blocks of Figure 2.6 on page 20 are the Controller and the Graphical User

Interface (GUI).

The Controller is implemented in matlab as the main program loop through which

each of the other blocks are called. It directs the flow of data between the subsystems
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Algorithm 2.1 Programmatic description of the Controller functionality

Main ()
1 Gui.Initialize()
2 Thread1()
3 Thread2()
Thread1 ()
1 while !exit do
2 rawData ← PhysicalTuners.GetRawData()
3 reducedData ← FeatureExtraction.Process(rawData)
4 Database.Insert(reducedData)
5 endwhile
Thread2 ()
1 while !exit do
2 repeat
3 sleep
4 until Database.NewDataAvailable()
5 detectorResults ← TargetDetection.RunDetector()
6 Alert(detectorResults)
7 Gui.Update(detectorResults)
8 endwhile

and regulates the communication among them. A pseudo-programmatic view of how

the Controller functions appears in Algorithm 2.1.

The Controller initializes matlab objects for all hardware interfaces used by the

system; it is also capable of interfacing with an RF simulator for use in place of physical

tuners. The Main loop initializes all of the interfaces, including the GUI. It then starts

two threads that run in parallel.

Thread1 operates the loop that runs the physical tuners and feature extrac-

tion subsystems. Data received from the first subsystem is passed to the second. The

resulting reduced dataset is then appended to the Database.

Thread2 meanwhile operates a separate loop that waits until new data is available

in the Database. Upon the arrival of new data, the target signal detection

subsystem is called, with the resulting data (alerts to target signals, etc.) being displayed

to the user (via the GUI or another suitable interface).

The Controller is designed to interface with a GUI when one is present, presenting

information to a human operator for operational or debugging purposes.

An option not depicted in the algorithm is the ability for the Controller to be
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configured to log the output data (rawData, reducedData, and detectorResults) to a file.

This capability is useful for both debugging and training purposes.

For use in training, once the data has been collected and logged, the resulting feature

vectors may then be manually labeled by an expert, with occurrences of target sequences

in the data identified. The resulting data set can then be used as training data and

input to the training algorithms of the classifier in order to build statistical models for

use by the target signal detection subsystem (see Section 4.2.1 on page 52).



27

3. Feature Extraction Exemplified Through DTMF Detection4

Many features mentioned in Chapter 2 are straightforward to calculate, while oth-

ers require multiple steps of estimation and analysis to determine. One feature that,

depending on the context, has the potential to be very discriminating is the presence

and specific pattern of DTMF tones that appear in the audio channel.

3.1 Overview of DTMF and DTMF Signaling

DTMF is a method of multiple-frequency signaling over analog channels in the voice-

frequency range [26]. The most common everyday usage for DTMF is in navigating

automated telephone menu systems [16, 22]. In this usage, a user is presented with

a list of options and then presses the numbered dialpad button corresponding to the

appropriate choice. This button press generates a tone comprised of two pure sine

waves, the combination of which is detected at the other end of the communication

channel. Examination of the frequency components of the received audio tone reveals

the specific button that was pressed. Table 3.1 on the next page shows the frequency

pairing to button mapping for DTMF as defined in International Telecommunication

Union (ITU)-T recommendation Q.23 [17].

Another application of DTMF signaling appears in the control of amateur radio

repeaters. These radio transceivers (most commonly found in VHF/UHF range) “listen”

on a particular input frequency and retransmit received signals on a different output

frequency. Repeaters are used to retransmit weak or low-powered signals in order to

allow users to communicate over a wider area of coverage; they are usually located atop

a tall building or high up on a hill or mountain. These remote locations often benefit

from some form of remote administration and this is typically accomplished via DTMF

4Portions of this chapter were developed in collaboration with Bradford D. Boyle.
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Table 3.1: DTMF frequency table

1209 Hz 1336 1477 1633

697 Hz 1 2 3 A
770 4 5 6 B
852 7 8 9 C
941 ∗ 0 # D

signaling on the repeater’s input channel [6].

In the appropriate contexts, the presence or absence of DTMF audio in the signal

being observed might delineate a signal that is of interest from one that is ordinary.

Similarly, while multiple signals might be expected to carry DTMF tones, the presence

of DTMF arranged in a specific pattern may indicate a signal of interest.

3.2 Fast and Automatic DTMF Detection

The DTMF detection problem can be stated in general for any given signal as

“Is there DTMF audio in this signal?”

. . . and the follow up question,

“Given that there is DTMF audio in this signal, which of the 16 signals (key

presses) is present?”

Traditionally, DTMF detection has been done with banks of narrow band-pass fil-

ters [5]. This technique is only effective for signals that are continuously observable,

however. We are interested in the case where a signal is observable only during spe-

cific observation time windows. These time windows occur at fixed intervals with

a known periodic frequency and duty cycle, as depicted in Figure 3.1 on the following

page. This type of windowing is seen with RF detectors that see only small portions of

the RF spectrum at a time due to the large width of spectrum under observation.

This observation window may be parameterized with window length (Tw) and duty

cycle (τ). We let Tw denote the length (in seconds) of one window, while Tn denotes
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window length
Tw

t

t

Figure 3.1: Definition of observation window. Top graph shows original signal, contin-
uously observable. Bottom graph shows the same signal as observed through the time
window (shaded regions) with length Tw. The duty cycle of the observation window is
the ratio of the length of time when the signal can be seen to the total length of the
window.

the same period in number of samples. As indicated in Figure 3.1, the window length

is one full period, from the point when the signal appears, through the time when the

signal is not observable, until the point when the signal reappears. The duty cycle of

the observation window is τ . The duration of the look-through (period when the signal

is observable) is given as τTw seconds, or bτTnc samples.

In the context of the DTMF detection problem, we also add a third parameter, the

number of consecutive windows (N) available for use in detection. The total number of

samples used for detection becomes n = bτTncN .

Figure 3.2 on the following page shows pictorially the problem under consideration.

A DTMF tone in Additive White Gaussian Noise (AWGN) is shown in the top plot,

while the actual sampled signal is shown in the second with non-“visible” portions of

the signal truncated to 0. Since we know the pattern of the look-through windows
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Figure 3.2: A DTMF tone is depicted at various stages in the estimation process.
The top plot shows the original DTMF signal as it would be received if there were no
windowing effects. The second plot shows the effects of applying the window to the
signal. The third plot shows the result of concatenating the look-through portions of
the windowed signal. The last plot shows the result of overlaying the original signal
with the minimum mean squared error best fit waveform.
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(which will result in valid samples), it is not necessary to sample during periods when

it is known that the signal is not present. For faster processing time and reduced

storage costs, we concatenate the blocks of samples together, as shown in the third plot.

The final plot shows the original signal (DTMF corrupted by AWGN) overlaid with a

generated DTMF tone corresponding to the best fitting (i.e., minimum mean squared

error) tone as determined by the process described in this chapter.

Each DTMF tone is characterized by its parameter vector, θ, defined in (3.1), where

α is the amplitude, ω is the frequency and φ is the phase offset of the component tone,

and the l or h subscript indicates that the parameter is for the low or high frequency

tone in the DTMF. An ideal DTMF tone, s(iTs;θ), is formed according to (3.2). This

form allows for amplitude imbalance, where the amplitudes of the two component

sinusoids are not the same.

θ = [αl ωl φl αh ωh φh] (3.1)

s(iTs;θ) = αl cos(ωliTs + φl) + αh cos(ωhiTs + φh) (3.2)

The approach that has been developed distinguishes between DTMF and non-DTMF

signals in the time-domain. Furthermore, this approach is capable of distinguishing

between different DTMF key presses. The technique that was developed is described by

Equations (3.3)–(3.4) below. Initially, a signal of interest is sampled, down-converted,

and FM demodulated giving the discrete waveform r(iTs). We denote the set of sample

indices by I and let n = |I| be the total number of samples collected. The best fitting

ideal DTMF tone s(iTs;θ
∗) (which includes the time-domain effects of windowing, see

Figure 3.2 on the previous page) is found and the resulting mean squared error εn(θ∗)

is recorded.

εn(θ) =
1

n

∑
i∈I

[r(iTs)− s(iTs;θ)]2 (3.3)

θ∗ = arg min
θ

εn(θ) (3.4)
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3.3 The Optimal Parameter Vector

The parameter vector that minimizes the mean squared error between the received

signal and the two-tone model of (3.2) is the solution to an unconstrained optimization

problem (that presented in (3.4)). Ideally, we would like to find a closed-form expression

for θ∗ as a function of the received signal samples r(iTs). As a first step to finding a

solution, we look at the first and second order necessary conditions [3].

First Order Necessary Condition In order for θ∗ to be a local minimum, it must

satisfy ∇εn(θ∗) = 0, that is, the partial derivative of the error with respect to each

parameter being estimated must be zero. Using this relationship, we can develop the

condition in terms of the received signal and the pure DTMF signal.

∂εn(θ)

∂θj
=

∂

∂θj

[
1

n

∑
i∈I

[
r(iTs)− s(iTs;θ)

]2]
= 0

1

n

∑
i∈I

[
∂

∂θj

[
r(iTs)− s(iTs;θ)

]2]
= 0

−2

n

∑
i∈I

[[
r(iTs)− s(iTs;θ)

] ∂

∂θj
s(iTs;θ)

]
= 0

∑
i∈I

r(iTs)
∂

∂θj
s(iTs;θ) =

∑
i∈I

s(iTs;θ)
∂

∂θj
s(iTs;θ) (3.5)

Second Order Necessary Condition In order for θ∗ to be a local minimum (and

not a maximum), it must also satisfy∇2εn(θ∗) ≥ 0, that is, the second partial derivative

of the error with respect to each parameter must be non-negative.

∂2εn(θ)

∂θk∂θj
=

∂

∂θk

(
∂εn(θ)

∂θj

)
≥ 0

−2

n

∑
i∈I

[
∂

∂θk

([
r (iTs)− s (iTs;θ)

] ∂

∂θj
s(iTs;θ)

)]
≥ 0
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2

n

∑
i∈I

[
∂

∂θk
s(iTs;θ)

∂

∂θj
s(iTs;θ) +

[
r(iTs)− s(iTs;θ)

] ∂

∂θk∂θj
s(iTs;θ)

]
≥ 0

∑
i∈I

r(iTs)
∂

∂θk∂θj
s(iTs;θ) ≥

∑
i∈I

[
s(iTs;θ)

∂

∂θk∂θj
s(iTs;θ)− ∂

∂θk
s(iTs;θ)

∂

∂θj
s(iTs;θ)

]
(3.6)

Finding a closed-form expression from (3.5) and (3.6) as a function of the received

samples for candidate θ∗s is difficult, if not impossible. As a result, we use a numerical

approach to finding the optimal parameter vector, θ∗.

3.4 Optimal Amplitude Parameters

Since it is not feasible to find a closed-form expression for the entire optimal param-

eter vector, we proceed by finding the expression for just the amplitude portion of this

vector. The amplitude vector α = [αl αh]T for a given set of frequencies and phases

can be derived in the following manner. First, let

ω = [ωl ωh]T

φ = [φl φh]T

α = [αl αh]T and

θ = [αl ωl φl αh ωh φh]T.

We can then write the low and high frequency tones as

sl(ωl, φl) = [. . . cos(ωliTs + φl) . . .]
T

and

sh(ωh, φh) = [. . . cos(ωhiTs + φh) . . .]T

and the DTMF model can be written as

s(θ) = αlsl + αhsh. (3.7)
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We can write the received signal’s samples in a similar manner:

r = [. . . r(iTs) . . .]
T.

With these definitions, it can be shown that the first derivatives of εn(θ) with respect

to the amplitude parameters (αl, αh) are, modulo multiplicative constants,

∂εn(θ)

∂αl
= −〈sl, r〉+ αh〈sh, sl〉+ αl||sl||22 and (3.8)

∂εn(θ)

∂αh
= −〈sh, r〉+ αl〈sh, sl〉+ αh||sh||22. (3.9)

The matrix of mixed partial derivatives (Hessian) is given as (again, modulo multiplica-

tive constants)

H =

 ||sl||22 〈sh, sl〉

〈sh, sl〉 ||sh||22

 .
The Hessian is always positive semi-definite. To see this, we note that the determinant

is given by

det(H) = ||sl||22 ||sh||22 − 〈sh, sl〉2 ≥ 0

where the last inequality holds from the Cauchy–Schwarz inequality. This tells us that

any local minimum (with respect to the amplitude parameters) is also a global minimum

and we can find the optimal amplitude parameters by solving the first-order necessary

conditions. These are ∂εn(θ)∂αl

∂εn(θ)
∂αh

 =

0

0


which lead via (3.8) and (3.9) to

α∗ =

 ||sl||22 〈sh, sl〉

〈sh, sl〉 ||sh||22


−1 〈sl, r〉
〈sh, r〉

 . (3.10)
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3.5 Numerical Solution for Frequency and Phase Parameters

Because of the difficulty in finding a closed-form expression for the rest of the optimal

parameter vector (frequency and phase), we turn our attention to numerical techniques

for solving the optimization problem. Since we are able to take both first and second

derivatives of (3.3), we can make use of gradient methods [3, 25]. The general gradient

method can be written as

θk+1 = θk − βkDk∇εn(θk)

where Dk is some positive definite matrix and βk is the size of the step taken at itera-

tion k.

3.5.1 Gauss-Newton Method

We can rewrite (3.3) in the following manner

εn(θ) =
1

2

∣∣∣∣∣
∣∣∣∣∣
√

2

n
(r− s(θ∗))

∣∣∣∣∣
∣∣∣∣∣
2

2

(3.11)

where r is the row vector of received samples and s(θ) is the row vector of model DTMF

samples. By defining

g(θ) =

√
2

n
(r− s(θ)),

the original optimization problem becomes

θ∗ = arg min
θ

1

2
||g(θ)||22 . (3.12)

We can solve (3.12) using a gradient method known as Gauss-Newton method [3] by

letting

Dk =
[
∇g (θ)∇g (θ)

T
]−1

.
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If ∇g(θ) has rank equal to the number of parameters, then the matrix

∇g(θ)∇g(θ)T

will be positive definite and therefore invertible. The gradient method can then be

written as

θk+1 = θk − βk
[
∇g(θ)∇g(θ)T

]−1∇g(θ)g(θ)T.

Substituting in for g(θ), we have

∇g(θ) = −
√

2

n
∇s(θ)

Dk =
n

2

[
∇s(θ)∇s(θ)T

]−1
which yields

θk+1 = θk + βk
[
∇s(θ)∇s(θ)T

]−1∇s(θ) [r− s(θ)]
T
. (3.13)

3.5.2 Step-size Selection

For choosing the step-size (βk), there are a variety of methods to choose from. These

methods include:

constant step-size The simplest technique is to use a fixed constant βk = β ∀ k for

every iteration. This is attractive because it is simple; however, choosing the

wrong constant can cause the method to diverge or perhaps to converge very

slowly.

diminishing step-size In this method, the step-sizes are chosen so that

lim
k→∞

βk = 0 while also

∞∑
k=0

βk =∞.

This prevents the sequence {θk} from converging to a non-stationary (and hence

non-optimal) point. Unfortunately, this selection rule will generally result in slow
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convergence which is not ideal given the problem statement.

Armijo Rule This is a simple successive step-size reduction method that is attractive

because of its ease of implementation and because at each iteration it guaran-

tees a sufficiently large improvement in the objective function. A more thorough

discussion is available in [3].

For simplicity, we have chosen to use the constant step-size for our implementation

of the Gauss-Newton method.

3.5.3 Full vs. Reduced Parameter Vector

If we take θ to be the full parameter vector as in (3.2) on page 31, we can use (3.13)

to solve for θ∗. In this case,

∇s(θ) =



∂
∂ωL

s(θ)

∂
∂φL

s(θ)

∂
∂ωH

s(θ)

∂
∂φH

s(θ)


=



. . . −iTs sin(ωLiTs + φL) . . .

. . . − sin(ωLiTs + φL) . . .

. . . −iTs sin(ωH iTs + φH) . . .

. . . − sin(ωH iTs + φH) . . .


.

Unfortunately, there are several stationary points that are not optimal and that do

not correspond to a valid frequency pair for DTMF. We can exploit the fact that the

frequency tuple (ωH , ωL) can only be one of 16 possible values and iterate over these

fixed values. The parameter vector is then θ = [φL φH ] and we have

∇s(θ) =

 ∂
∂φL

s(θ)

∂
∂φH

s(θ)

 =

. . . − sin(ωLiTs + φL) . . .

. . . − sin(ωH iTs + φH) . . .

 .
We then only need to use Gauss-Newton to find the phase that minimizes εn(θ). A

drawback to this is approach is that we are now solving 16 optimizations (one for each

frequency combination) instead of a single one increasing the time until we make a

decision. In practice, even when running the optimizations in series (i.e., one after the
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other) we observed convergence times less than one second, fast enough for the purposes

of the target signal detection system. This time could be further reduced by running

the optimizations in parallel and selectively pruning preemptively.

3.6 Determining DTMF vs. non-DTMF

In order to “detect” DTMF signals, we formulate the decision problem as a classical

hypothesis testing with the minimum mean squared error acting as a performance index.

More formally, let

H0 : DTMF

H1 : Not DTMF.

The Bayes risk is then

R =

1∑
i=0

1∑
j=0

PjCi,j

∫
zi

pεn(θ∗)|Hj
(εn(θ∗)|Hj) dεn(θ∗)

where Pj is the a priori probability associated with hypothesis Hj , Ci,j is the cost

associated with declaring hypothesis Hi to be true, when in fact hypothesis Hj is true,

and zi is the range of values for εn(θ∗) where we declare Hi to be true. If we assume

that the cost of errors are identical and that there is no cost associated with correct

decisions, i.e., C0,1 = C1,0 and C0,0 = C1,1 = 0, then the decision rule that minimizes

the Bayes risk is

Λ(εn(θ∗))
H1

<
>

H0

P0

P1
, (3.14)

as shown in [28].

We decide in favor of H0 if the left hand side is less than the quantity on the right

hand side and decide against H0 (in favor of H1) if the left hand side is greater. The
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quantity Λ(εn(θ∗)) is defined as

Λ(εn(θ∗)) =
pεn(θ∗)|H1

(εn(θ∗)|H1)

pεn(θ∗)|H0
(εn(θ∗)|H0)

. (3.15)

Looking at equations (3.14) and (3.15), we know that in order to make a decision

using a Bayes’ test we must know: 1) the a priori probabilities of a signal being DTMF or

non-DTMF and 2) the probability distribution of εn(θ∗) under the different hypotheses.

Fixing the a priori probabilities is difficult and an incorrect guess can lead to poor

detector performance.

We can remove the dependence on these values by considering a Neyman-Pearson

style detector, wherein the probability of false alarm is fixed and the threshold level

is set such that this false alarm rate is met. The probability of false alarm (PF ) and

probability of detection (PD) are given by

PF =

∫
z0

pεn(θ∗)|H1
(εn(θ∗)|H1) dεn(θ∗)

PD =

∫
z0

pεn(θ∗)|H0
(εn(θ∗)|H0) dεn(θ∗).

Specifying a maximum allowable false alarm rate (α), we solve

α =

∫
z0

pεn(θ∗)|H1
(εn(θ∗)|H1) dεn(θ∗)

for z0 and find the corresponding PD. While this removes the dependency on the a priori

probabilities, we still need the probability distributions for εn(θ∗). Finding closed-form

expressions for these distributions is difficult. As an alternative, we approximate these

distributions by observing the empirical distributions over a variety of settings.
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Table 3.2: DTMF parameters for empirical distributions

Tw (Tn) {8, 12, 16, 20} ms ({200, 300, 400, 500} samples)
τ {8, 12, 16, 20}%
N {1, 2, 5}

SNR {0, 3, 6} dB

3.7 Empirical Distributions

To build up the empirical distributions (i.e., histograms) of εn(θ∗) under the dif-

ferent hypotheses, an arbitrarily large number of DTMF and non-DTMF samples were

generated randomly and windowed. Additive white Gaussian noise was added to the

samples and the optimal θ∗ values were computed. The resulting value of εn(θ∗) was

utilized to create histograms of pεn(θ∗)(εn(θ∗)) under both hypotheses based on the

window parameters.

The DTMF samples were generated according to (3.16), which explicitly includes the

non-ideal effects of amplitude imbalance, i.e., when the amplitudes of the two sinusoids

comprising the DTMF signal are not equal.5

r = al cos(ωLiTs + φL) + ah cos(ωH iTs + φH) (3.16)

al, ah ∼ Uniform(0, 1)

Distributions for εn(θ∗) were generated for a variety of windowing parameters, the

full set of which are shown in Table 3.2. Three representative distributions are shown

in Figure 3.3 on the following page. With these distributions, we can plot Receiver

Operating Characteristic (ROC) curves describing the expected performance of the

detector.

5The ITU-T Recommendation Q.23 [17] does not specify the relative power levels of each frequency
component. While it is common that a Recognized Private Operating Administration (e.g., AT&T)
would specify the maximum power level difference between each frequency [18], it is not guaranteed.
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Figure 3.3: Representative empirical distributions of εn(θ∗) for the case where there
is amplitude imbalance but the frequencies are fixed at the values specified for each
subfigure. Increasing the value of every parameter increases the separation in the two
distributions, making the decision between accepting H0 or H1 easier and thus resulting
in better detector performance.

3.8 Detector Performance

Plotted in Figures 3.4 – 3.6 on the next page are ROC curves which show the prob-

ability of correct detection, PD (i.e., that a signal is DTMF when it is in fact DTMF)

versus the probability of false alarm PF (i.e., deciding that a signal is DTMF when it is

in fact not DTMF). An ideal detector would have PD = 1 while PF = 0; however, real-

istic detectors will have make a trade off between detection and false alarm. This trade

off is captured in the ROC curve; the ROC curve also allows us to make comparisons

between the performance of the detector under different window parameters.

Figure 3.4 on the following page shows how the performance of the DTMF detector is

affected by increasing the length of the window (Tw) while all other window parameters
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Figure 3.4: ROC curves for the DTMF detector as a function of window length Tw
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Figure 3.5: ROC curves for the DTMF detector as a function of duty cycle τ
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Figure 3.6: ROC curves for the DTMF detector as a function of SNR
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and Signal to Noise Ratio (SNR) are held constant. The number of samples available

from each look-through window is bτfsTwc, so increasing the window length while hold-

ing all other window parameters constant results in a larger number of received signal

samples. With a larger number of samples to work with, we would intuitively expect

the detector to have better discriminatory performance when deciding between DTMF

and non-DTMF. Inspection of Figure 3.4 reveals that as the window length increases,

the detector’s probability of correct detection (for a fixed probability of false alarm)

increases, confirming the intuition that detector performance would be increasing in

window length. The effect of varying window length is most clearly seen for the case

where only one window (N = 1) is used for reaching a decision.

Figure 3.5 shows how the performance of the DTMF detector is affected by increasing

the duty cycle (τ) (i.e., decreasing the amount of time in a single window when the

signal is not able to be observed) while all other window parameters and SNR are

held constant. For a fixed window length, a larger duty cycle equates to a larger look-

through window. This means that we have more contiguous data samples for processing

and making a decision and we would expect better performance from the detector under

these circumstances. Inspection of Figure 3.5 reveals that as the duty cycle increases,

the detector’s probability of correct detection (for a fixed probability of false alarm)

increases, confirming the intuition about the effect of varying duty cycle on the detectors

performance.

Finally, Figure 3.6 shows how the performance of the DTMF detector is affected by

SNR while all window parameters are held constant. With a higher SNR, the received

signal is less corrupted by noise allowing for better discriminating power with fewer

received samples. This can be seen by noting that the best performing curve (6 dB) of

N = 2 (in Figure 3.6(b)) is matched by the performance of the detector at an SNR of

0 dB with N = 5 (Figure 3.6(c)); the additional 6 dB of SNR allows for comparable

performance with three fewer windows. We also observe near ideal detector performance

for only N = 5 windows in the majority of cases.
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Figure 3.7: DTMF detector’s key identification performance

3.8.1 DTMF Key Identification

In addition to determining whether a signal of interest uses DTMF, it is also useful to

determine, for signals that use DTMF, which particular key from Table 3.1 (i.e., which

pair of frequencies) is being transmitted. To make this determination, after a signal

is declared to be DTMF, the values of ωl and ωh that solve (3.4) are used as indices

in Table 3.1 to find the corresponding DTMF key. Now, in addition to specifying the

performance of the detector in determining DTMF versus non-DTMF signals, we must

also consider the performance of the detection method at distinguishing individual keys.

Figure 3.7 depicts the conditional probabilities for correctly identifying a particular

DTMF tone; this is the probability that, given we have declared the signal of interest

to contain DTMF, the detector will also correctly identify the corresponding key. We

see that for a fixed duty cycle (e.g., τ = 10%), moving from one window (N = 1) to two

windows (N = 2) results in a significant improvement in the detector’s key accuracy

(12.5%→ 67.1%); the performance increases even further when moving from two to five

windows (67.1%→ 86.4%).
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3.8.2 DTMF Detection Algorithm

Presented as Algorithm 3.1 is a pseudo-code implementation of the DTMF detector

that we have developed. It is a collection and summarization of the key equations and

design decisions described above.

Algorithm 3.1 Time domain Dual-Tone Multi-Frequency detection

Require: r the vector of received signal samples
I the set of sample indices
Fs the rate at which the signal was sampled
δ � 1 stopping criteria for Gauss-Newton iteration
η threshold for deciding DTMF

for all fl ∈ {697, 770, 852, 241} do
ωl ← 2πfl
for all fh ∈ {1209, 1336, 1477, 1633} do
ωh ← 2πfh
k ← 0

φ(0) ← [0 0]T

α(0) ← [1 1]T

θ∗ ← θ(0)

repeat

s
(k)
l ← sl

(
ωl, φ

(k)
l

)
, s

(k)
h ← sh

(
ωh, φ

(k)
h

)
φ(k+1) ← φ(k) +

(
∇φs(θ(k))∇φs(θ(k))T

)−1
∇φs(θ(k))

(
r− s(θ(k))

)T
α(k+1) ←


∣∣∣∣∣∣s(k)l

∣∣∣∣∣∣2
2

〈
s
(k)
h , s

(k)
l

〉
〈
s
(k)
h , s

(k)
l

〉 ∣∣∣∣∣∣s(k)h

∣∣∣∣∣∣2
2


−1 〈s

(k)
l , r

〉〈
s
(k)
h , r

〉
k ← k + 1

until
∣∣∣εn(θ(k−1))− εn(θ(k))

∣∣∣ < δ

if εn(θ(k)) < εn(θ∗) then

εn(θ∗)← εn(θ(k))

θ∗ ← θ(k)

end if
end for

end for

if εn(θ∗) < η then
Declare r to be DTMF and use ω∗ to determine key

end if
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Table 3.3: Maximum recommended frequency variation

Low Frequencies High Frequencies

697 Hz 684.454− 709.546 Hz 1209 Hz 1187.238− 1230.762 Hz
770 Hz 756.140− 783.860 Hz 1336 Hz 1311.952− 1360.048 Hz
852 Hz 836.664− 867.336 Hz 1477 Hz 1450.414− 1503.586 Hz
941 Hz 924.062− 957.938 Hz 1633 Hz 1603.606− 1662.394 Hz

3.9 Non-Ideal DTMF: Frequency Deviation

In the previous sections, we made the assumption that the pair of frequencies in a

DTMF signal could only be one of 16 possible pairs and in fact this assumption was

exploited in the design of our detection algorithm. However, the ITU recommenda-

tion that standardizes DTMF specifies that the transmitted frequencies must be within

±1.8% of the nominal frequency [17]. Table 3.3 lists the ranges of allowed variance

for each of the DTMF frequencies. In some circumstances, it is possible that observed

frequency deviations might be even higher than ±1.8% (and the ITU recommendation

for building DTMF receivers suggests that this possibility be taken into account [18]).

An approximate maximum likelihood estimate for frequency involves the computation

of the Power Spectral Density (PSD) of the received signal [19]; because of the window-

ing, though, this approach yields unsatisfactory performance, even with a significantly

larger number of windows. Techniques based on moment matching and expectation

maximization [19] were also attempted with even worse performance.

Näıve application of the developed technique to non-ideal DTMF results in the ROC

curve shown in Figure 3.8 on the next page, where each DTMF tone was generated

using sinusoid frequencies that were uniformly distributed ±1.8% from the nominal

values (uniformly distributed in the ranges specified in Table 3.3). At first glance, this

graph might appear to have rather counterintuitive behavior, as there is a decrease in

performance as we increase from two to five to ten windows.

The explanation is that even with 10 windows, we are only observing a fraction of

the total period of the DTMF tone. With only one window, there are so few samples
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Figure 3.8: ROC curves for the DTMF detector with the non-ideal effect of frequency
deviation (sinusoid frequencies uniformly distributed ±1.8% about nominal)

that it is easy to find a good fitting DTMF model. As the number of windows increases,

though, the impact of the frequency deviation becomes larger, resulting in a poorer

fit. Nevertheless, despite the performance hit when considering the non-ideal effects of

frequency deviation, the detector’s performance is significantly better than random coin

flipping (which has the ROC curve given by the dashed line in the figure, PD = PF ).

3.10 DTMF Feature Extraction Conclusions

While methods exist for DTMF detection and decoding, they have poor performance

in scenarios where there is limited data availability due to periodic windowing of a signal

that occurs under certain circumstances. We have developed a technique for detecting

and decoding DTMF signaling based on minimizing the mean squared error between

an idealized model for DTMF tones and the received signal. Using this technique,

detection with a high probability of correct detection and a low probability of false alarm

is possible in very low SNR environments and only requires a few look-through windows

worth of data. The developed technique can be extended for other non-DTMF multiple-
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frequency signaling schemes through the development of an appropriate parametric

model. It is also possible to extend this technique to digital modulation schemes such

as Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK), and Phase Shift

Keying (PSK). Development of these additional detectors would provide additional

features for the classification of RF signals and provide higher levels of discriminatory

power for the detection and classification of target sequences.
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4. Classification

The basic problem of classification involves determining to which class an object

belongs, given that all objects are known to be members of one distinct class. This

problem is exemplified in Chapter 3, where each observed RF signal is an object that is to

be identified as being a member of one of the two mutually exclusive classes, Contains-

DTMF and Does-Not-Contain-DTMF. A separate classification problem is solved

when we place objects of class Contains-DTMF into one of 16 mutually exclusive

classes representing each of the 16 DTMF keys.

In the context of the larger scope of this paper, the objects that we seek to classify are

the sequences of signals that are observed in the RF environment. We wish to classify

every sequence as being either a Target-Sequence or a Non-Target-Sequence

based on the target sequence signatures being employed.

4.1 Linear Classification

The classification problem can be seen in the example of Black signals and White

signals. Here, Black and White are classes of signals.

The classification begins with the identification of suitable features for Black and

White signals. In this case, we measure two quantities for every signal, X1 and X2

(representative of any of the features that we previously discussed in Chapter 2). With

a group of sixteen signals (eight Black and eight White) plotted on the feature axis

as in Figure 4.1 on the following page, one can see that a straight line is easily capable

of separating the two classes of signals. The goal of linear classification is to identify the

straight line, called the discriminant function, that separates one class from another.

This is a simple example of a linear classifier, which makes a decision based on a

linear combination of the characteristics it uses. Unfortunately many decision problems

do not lend themselves to this kind of simple process.
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X2

X1

H1 H2 H3

Figure 4.1: Black and White signals in 2-space with 3 discriminant functions. H3

doesn’t separate the 2 classes. H1 does but with a small margin while H2 separates
Black from White with the maximum margin.

4.2 Linear Classifiers in Radio Frequency Communications

As described in Chapter 2, our classifier relies on a series of snapshots of the RF

environment. The various signals, or communications events, that are detected will be

identified and the features associated with each event will be identified. Each communi-

cation event is described by a feature vector whose elements are descriptive character-

istics of a signal (i.e., power, bandwidth, the presence of a DTMF sequence, direction

of arrival, etc.). Each communication event detected during a sample period can thus

be thought of as a point in d-dimensional space (one dimension for each feature in the

vector). The use of a discriminative model implies that we do not know the underlying

probability densities from which the communications and their features are generated,

but we assume that the form of the function that separates a target-class communi-

cation from a non-target-class communication (the discriminant function) is a linear

combination of the features. In the limited sense that the prior densities are assumed

unknown, discriminative linear classifiers are considered non-parametric methods. The

attractiveness of linear classifiers lies in their simplicity and tractability.

In its simplest form, the linear discriminant function g(x) is a linear combination
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4 CHAPTER 5. LINEAR DISCRIMINANT FUNCTIONS

and computational complexities of various gradient descent procedures for minimizing
criterion functions. The similarities between many of the procedures sometimes makes
it difficult to keep the differences between them clear and for this reason we have
included a summary of the principal results in Table 5.1 at the end of Sect. 5.10.

5.2 Linear Discriminant Functions and Decision Sur-
faces

5.2.1 The Two-Category Case

A discriminant function that is a linear combination of the components of x can be
written as

g(x) = wtx + w0, (1)

where w is the weight vector and w0 the bias or threshold weight. A two-categorythreshold
weight linear classifier implements the following decision rule: Decide ω1 if g(x) > 0 and ω2

if g(x) < 0. Thus, x is assigned to ω1 if the inner product wtx exceeds the threshold
−w0 and ω2 otherwise. If g(x) = 0, x can ordinarily be assigned to either class, but
in this chapter we shall leave the assignment undefined. Figure 5.1 shows a typical
implementation, a clear example of the general structure of a pattern recognition
system we saw in Chap. ??.

x0 = 1

x1                    x2                . . .                    xd

. . .

w2 

w0 

w1 
wd 

g(x)

Figure 5.1: A simple linear classifier having d input units, each corresponding to the
values of the components of an input vector. Each input feature value xi is multiplied
by its corresponding weight wi; the output unit sums all these products and emits a
+1 if wtx + w0 > 0 or a −1 otherwise.

The equation g(x) = 0 defines the decision surface that separates points assigned
to ω1 from points assigned to ω2. When g(x) is linear, this decision surface is a
hyperplane. If x1 and x2 are both on the decision surface, then

wtx1 + w0 = wtx2 + w0

or

wt(x1 − x2) = 0,

Figure 4.2: Diagram of the linear classifier. The classifier has d input units correspond-
ing to the values of the features of a measured communication. Each input feature xi
is multiplied by its corresponding weight wi. The single bias unit always emits a value
of 1. The final output unit g(x) emits a +1 if wTx > 0 and a −1 otherwise.

of weighted features, where the features of a communication are denoted x1, x2, . . . , xd

and the associated weights are denoted w1, w2, . . . , wd as in (4.1).

g (x) = w0 +

d∑
i=1

wixi (4.1)

Here, w0 is called the bias and the negative of the bias is called the threshold. We can

rewrite the discriminant function using vector notation as

g (x) = wTx + w0. (4.2)

The form of (4.2) suggests that we are seeking a hyper-plane in d− 1 dimensions that

will separate the data points so that on one side there are target communications and on

the other side are non-target communications. This structure is indicated in Figure 4.2.

Since there are two classes, C1 (target) and C2 (non-target), a communication event

described by the vector x is assigned to class C1 if g(x) ≥ 0 and to class C2 otherwise,

as depicted in Figure 4.2. Therefore, the decision surface is determined by the relation
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g(x) = 0. The decision surface divides the feature space by a hyper-plane. The ori-

entation of the decision surface is determined by the weight vector w and the location

of the boundary is determined by the threshold w0. To see this, consider two signals

described by xA and xB that are both on the decision boundary, then

wTxA + w0 = wTxB + w0,

or

wT (xA − xB) = 0,

which shows that w is perpendicular to any vector in the hyper-plane.

4.2.1 Computing the Weight Vector

Estimates of the classifier weights are obtained through the use of labeled sample

data obtained through simulation, experiments, or descriptive reports. The data should

be labeled correctly. The training data are provided as pairs {X, s}, where X contains

descriptions of communication signals and s is a vector of labels, one for each communi-

cation. Thus, X is an N × d matrix where each row represents a single communication

event, xi, described by d features listed across the columns. The label vector is a N × 1

vector with components equal to either +1 or −1 (a value of +1 in the ith position

indicates that the communication described by xi is labeled “target”).

The methods used to compute the classifier weights are based on some assumptions

about the data. The first is that the parameters of the underlying distribution are

stationary and the values are independent (i.e., the occurrence of a particular commu-

nications event does not affect the likelihood of any other communications event also

occurring). In order to simplify the calculations, we also assume that the data are zero-

mean. To meet this requirement, we simply subtract the mean of each column in the X

matrix from the entries in the respective column. We also require that the number of

labeled samples N be large enough to estimate the cross-correlation and the correlation
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of the true underlying distributions.

Lastly, an additional modification of the data is performed in order to compute the

bias or threshold. A column consisting of all ones is appended to X; this is a dummy

variable, x0 corresponding to the weight w0.

With this structure in place, we proceed with determining the weight vector by one

of two methods.

Linear Minimum Mean Squared Error Estimator The first approach to deter-

mining the linear classifier weights is based on a linear estimation technique taken from

a class of estimators generally called Wiener filters [19]. Given labeled target data,

where si ∈ {±1} is the label for the ith communication event (+1 denotes a target

signal and −1 denotes a non-target signal), we can find appropriate weights, w, for the

d features that describe our communication signals in order to get an estimator (ŝ) for

s:

ŝi = wTxi

= w0 + w1x1,i + w2x2,i + . . . wdxd,i. (4.3)

We desire that the weights be chosen so as to minimize the expected mean squared error

E
[
(s− ŝ)

2
]

for new unlabeled data. Equation (4.3) describes the classifier consisting of

a weighted sum of the features of each new communication; the result of the calculation

is compared to a threshold.

ŝi

target

<
>

non-target
τ (4.4)

If si exceeds the threshold, then the ith communication event (si) is designated

a target signal. Thus, the coefficients in w determine whether a signal is part of a

target sequence or not. This estimator is the Linear Minimum Mean Squared Error

(LMMSE) estimator, and it is optimal in the mean squared sense, that is, it is the best

linear estimator assuming stationarity of the parameters of the underlying probability
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distributions ([28], Section 6.1).

In order to train the estimator, we label each row of the training data with the value

si ∈ {±1}; here τ = 0. Then, we estimate the correlation Rsx ∈ R1×d between s and x,

Rsx =
1

N

N∑
i=1

sixi, (4.5)

and the autocorrelation Rxx ∈ Rd×d of x,

Rxx =
1

N

N∑
i=1

xix
T
i . (4.6)

The desired weights for the features we seek are then given by

w = R−1xxRsx. (4.7)

By using this approach we are able to obtain appropriate weights for each feature

based on labeled data, which makes the feature reduction simple: we simply throw out

features with negligible weights to eliminate non-discriminatory features. Furthermore,

we have an estimator in (4.3) that can be used to decide whether an unlabeled signal

xi is likely a target signal or not. This linear estimator is considered optimal in the

mean squared error sense if the parameter s is assumed to be stationary and the values

si are assumed to be independent. The mean squared error can be used to rate the

performance of the estimator in classifying target signals.

Least-Squares Error (LSE) and the Pseudo-inverse A second approach, one

that does not make any assumptions about the statistical structure of the data, is the

Least-Squares Error (LSE) criterion [19]. We seek a vector w such that Xw = s. If

X were non-singular, then we could simply compute w = X−1s and obtain a solution.

However, the data matrix will typically have more rows than columns, and so w will be

over-determined. Instead, we can obtain a vector w that minimizes a function of the
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error between Xw and s. The classical approach is to minimize the squared length of

the error vector, Xw − s, which leads to the LSE criterion function:

J(w) = ‖Xw − s‖2

=

N∑
i=1

(
wTxi − si

)2
.

A simple closed-form solution can be obtained by forming the gradient with respect

to w

∇wJ =

N∑
i=1

2
(
wTxi − si

)
xi

= 2XT (Xw − s)

and setting it equal to zero, yielding the necessary condition

XTXw = XTs. (4.8)

The d × d matrix XTX, known as the sample correlation matrix, is square and

typically non-singular, so we can solve for w uniquely as

w =
(
XTX

)−1
XTs. (4.9)

The expression
(
XTX

)−1
XT is known as the Moore-Penrose pseudo-inverse [15];

it is a generalization of the notion of a matrix inverse to non-square matrices. The

pinv command in Matlab can be used to compute the pseudo-inverse of a matrix,

so a simple procedure for computing the weights and training estimates is given by

Algorithm 4.1.

Using either method to determine w allows for the linear classification to be imple-

mented by the procedure given in Algorithm 4.2.
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Algorithm 4.1 Least-Squares Error linear classifier training

Require: X the N × d feature matrix
s the class label vector
X← [X 1N ]

X† ←
(
XTX

)−1
XT

w← X†s
return w the LSE linear classifier weights

Algorithm 4.2 Linear classification process

Require: w the d+ 1-dimensional linear classifier weights
x the d-dimensional feature vector for an observed signal
x← [x 1]
ŝ← 〈w,x〉
if ŝ > 0 then

Observed signal described by x is a target signal
else

Observed signal described by x is a non-target signal
end if

4.2.2 Example

To clarify how the classifier works, we consider an example. Each communication

event is represented as a point in m-dimensional space (a dimension for each feature).

The form of (4.3) suggests that we are seeking a hyper-plane in m− 1 dimensions that

will separate the data points so that on one side there are target communications and

on the other side are non-target communications. To collect training and testing data

for the linear classifier, contrived scenarios were captured from an urban environment in

Camden, New Jersey. The noisy background RF environment consisted of several Very

High Frequency (VHF) and Ultra High Frequency (UHF) phone paging systems, public

safety communications, commercial and private Push To Talk (PTT) walkie-talkies, and

cellular telephone transmissions. A simple three transmitter sequence was developed for

use as an injected “target” sequence.
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Table 4.1: Sampling of the more than 36, 000 signals that were observed during system
testing and used for training and testing the linear classifier

Time
(s)

CF
(MHz)

BW
(kHz)

Power
(dBm)

DTMF
key

Latitude Longitude

290.2836 461.0404 3.9063 -95.0132 – 39.9512 -75.1257
290.2836 461.1250 4.6875 -86.5957 – 39.9512 -75.1257
290.3206 462.4902 1.9531 -82.2488 – 39.9512 -75.1257
290.3206 462.6880 1.5625 -66.8078 1 39.9512 -75.1257
290.7489 463.2815 8.5938 -78.6614 – 39.9512 -75.1257
290.7489 463.4033 5.8594 -78.6820 – 39.9512 -75.1257
290.7905 464.6566 1.5625 -85.1937 – 39.9512 -75.1257
291.0104 851.1701 12.5000 -65.2993 – 39.9512 -75.1257
291.0556 853.1688 4.6875 -85.9458 – 39.9512 -75.1257
291.0903 853.6689 8.2031 -78.0500 – 39.9512 -75.1257

In the following example, the observed signals are described by the following seven

features:

(1) the time the RF signal was observed,

(2) the center frequency (CF) of the RF signal,

(3) the bandwidth (BW) of the RF signal,

(4) the received power of the RF signal,

(5) whether the RF signal contains a DTMF tone,

(6) the latitude of the receiver when the RF signal was observed, and

(7) the longitude of the receiver when the RF signal was observed.

Note that these features were chosen based on perceived usefulness in distinguishing

target communication events along with their relative ease of calculation. The target

sequence consisted of communications utilizing differing center frequencies, transmit

powers, and channel usage (i.e., voice versus DTMF).

In order to train the classifier, over 36,000 communication events were observed, of

which fewer than 1% were a part of the target sequence. Target signals and non-target

signals were labeled accordingly in the incoming data. A subset of the observed signals
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(10 communication signals out of over 36, 000) that were used to test the trained classifier

is shown in Table 4.1. After collecting the training data, we trained the classifier and

computed the coefficients, w. For this experiment, we used both LMMSE and LSE

methods and obtained identical weight vectors

w = {0.0000, 0.0000, 0.0001, 0.0001, 0.2186, 0.0000, −0.1278, −0.9975}

where the value −0.9975 is the bias term w0. Thus the classification test was formulated

as

0x1+0x2+0.0001x3+0.0001x4+0.2186x5+0x6−0.1278x7−0.9975
target

<
>

non-target
0. (4.10)

Looking at the values of the linear classifier weights, the two features with the largest

coefficients are the presence of DTMF on the channel and the longitude of the receiver

when the signal was observed; since these features have the largest coefficients in the

classifier, they would provide the most discriminative representation of the data in this

example. Also, notice that the coefficients for the first feature (time signal was observed)

and the sixth feature (latitude of the receiver when the signal was observed) are zero,

indicating that they provide no useful information to separate signal classes in this

example.

Running the unlabeled training data through this linear classifier, we obtain a prob-

ability of correct detection (i.e. the probability that we correctly label a target signal as

being a target signal) of only 0.3125 with a probability of false alarm (i.e. the probabil-

ity of incorrectly identifying a non-target signal as being a target signal) of 0. Applying

the linear classifier to an unlabeled data set that was not used in training, the probabil-

ity of correct detection decreases to 0.2857. The linear classifier has unacceptably low

performance even when being run on the same data sets that were used to train it and

this is the case where we would expect the best performance. It can be concluded that

a detection and classification system based on linear classification does not correctly
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identify enough target signals to be useful.

The reason for such poor performance from the linear classifier is that with the

selection of features listed above, the classification problem is not linearly separable;

no hyper-plane through the feature space will sufficiently separate target signals from

non-target signals. To see this, consider Figure 4.3 on the next page, which shows a

subset of all of the 2-dimensional feature subspaces of the 7-dimensional feature space in

this example. Non-target signals are plotted as a blue asterisks, while target signals are

plotted as red squares. Looking at the plot of DTMF key index versus longitude (which

should have the most discriminating representation of the data in this example), it is

clear that any linear discriminant function will result in misclassifying all non-target

signals as being target signals or in declaring several target signals to be non-target

signals. This is true regardless of which feature subspace is considered.

4.3 Extension to Multiple Layers

A single layer linear classifier as described above requires labeled data sets that are

known to be linearly separable in order to function properly. When the data are not

linearly separable, it is sometimes possible to combine several layers of linear classifiers to

build a successful classifier. A Multi-Layer Perceptron (MLP) is a multi-layer realization

of the test given by (4.3) and (4.4). It can be viewed as a weighted sum of features

detector, with optimal weights that are learned from labeled training data. A simple

MLP is illustrated in Figure 4.4 on page 61.

MLPs have the advantage that they are capable of realizing more complicated deci-

sion surfaces than a simple linear classifier alone. However, they are somewhat harder

to design than a single-layer realization of (4.3) and (4.4).

4.4 Sequential Nature of Target RF Communication Events

The classification techniques described in this chapter, including both the simple

linear classifier and the Multi-Layer Perceptron, make classification decisions based on a
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Figure 4.4: Example of a multi-layer perceptron. All inputs xi feed into individual
perceptrons with distinct weights and thresholds for each perceptron (left half). The
outputs of these perceptrons can then be used as inputs to a second layer of perceptrons
(right half).

snapshot of the decision surface at a single point in time. In the case of classifying target

RF signals, these techniques make decisions based on the state of the RF environment

at a single point in time. While the algorithms may be run multiple times at regular

intervals (as in our final implementation), subsequent decisions will have no inherent

knowledge of, or dependence on, previous decisions.

The sequential nature of target RF communication events is a result of some signals

being benign when observed in isolation but target when observed as a part of a tem-

poral sequence with other signals. In order to distinguish between these two cases, a

classification sequence with some element of memory must be used.

4.5 Profile Hidden Markov Model

One advanced classification technique to capture the element of time needed for this

problem is the Profile Hidden Markov Model (PHMM) [20]. The PHMM, setup in the

proper manner, would be able to detect the target signature patterns (sequences) within
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Begin Mj
End

Ij

Dj

Figure 4.5: Profile Hidden Markov Model. Each square block represents a “match”
state (Mj), where that state represents one stage of the target signature. The number of
match states is equal to the number of steps in the target signature. Between each match
state are (optional) diamond blocks (Ij), representing inserted signals between each
match state. A path through circular blocks (Dj) is also present, representing deleted
or skipped match states that were not observed. Each arrow represents the manner
in which flow may move from one block to another; the model includes a probability
associated with each arrow.

a series of feature vectors that are provided as input.

The PHMM model (shown in Figure 4.5) describes a target signature (or “profile”)

for a multi-step target signature, similar to the one described in Section 4.2.2 on page 56.

The model works by defining a match state for each step of the target signature, and

then adding optional insert and deletion states to allow for non-target signals to be

observed between each matched target signal, or for one or more steps in the target

signature to be missing from the set of observed signals.

The probabilities associated with each transition shown in Figure 4.5 are deter-

mined through a training process (e.g., Baum-Welch [2]). Then, with the model built,

we can determine the probability of the collected observations being made given the

model parameters. Because there are exponentially many possible state sequences, this

problem is typically solved with a dynamic programming algorithm (e.g., the Forward

Algorithm) [27].
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4.6 Example with PHMMs

To show that the PHMM is a feasible solution to our classification problem, the data

that were collected from the example exercise of Section 4.2.2 on page 56 were processed

using a PHMM as the classifier instead of a linear classifier.

A PHMM was constructed in matlab using the HMM Toolbox for matlab [24].

The form of this PHMM is the same as in Figure 4.5 on the previous page, with one

match state for each step in the three stage example sequence.

The training process consisted of developing two sets of transition parameters, one

to represent the model when the target signature is known to be present (the target or

profile model), and the other for when the signature is known to be absent (a background

model). For this example, the target model was trained with 8 datasets all collected

from the same example scenario (training sets). The background model was similarly

trained using data collected over an extended period of time.

For both models, a log-likelihood value is generated that indicates the probability

density of the observed data, D, for each of the models. By taking the difference of the

two log-likelihood values, we can form a log-likelihood ratio

ln [L(HP , HB |D)] = ln [L(HP |D)]− ln [L(HB |D)]

where HP represents the hypothesis that the data were generated by the target signature

profile model and HB represents the hypothesis that the data were generated by the

background model [8]. This log-likelihood ratio is positive for the case where it is more

likely that the data were generated by the target model and not by the background

model. Negative values indicate the opposite, that it is more likely that the data were

generated by the background model.

This log-likelihood ratio forms the basis for Figure 4.6 on the following page, which

depicts the output of the PHMM classifier as this ratio versus time in relation to the

three events that form the target sequence.
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Original Training Set 1

Original Training Set 2

Original Training Set 3

Testing Set with Complete Signature

"Complete" Testing Set with Third Event Removed

"Incomplete" Testing Set 1: No Third Event

"Incomplete" Testing Set 2: No Second Event

"Incomplete" Testing Set 3: Shorter Duration Events
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Figure 4.6: Profile Hidden Markov Model classifier test results. The vertical axis shows
the log-likelihood ratio of the likelihood of the target signature model having generated
the observed data to the likelihood of the background noise model having generated the
observed data; the higher the value, the more likely it is for the observed data to contain
the target signature. The three dotted “Original Training Set” series show the results of
running the classifier on data used to train the target signature model. The “Testing Set
with Complete Signature” is a unique series collected in the same manner as the training
sets but not used in training. The three “Incomplete Testing Set” series represent data
that were collected with the attributes shown (portions of the target signature were
intentionally omitted when collecting the data), while the “Complete Testing Set with
Third Event Removed” represents all the same data as the first “Complete” testing set
except for the signals comprising the third event, which have been manually removed
from the data set. The “Background Testing Set” is a representation of data that was
collected in the same environment as the other data but without any signals from the
target signature present.
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To test the performance of the model, the PHMM classifier was used to analyze

separate data sets, each with varying degrees of similarity to the original scenario (testing

sets).

Three of the data sets that were used in training the target model are shown, each

indicating relatively high ratios. While this is to be expected, when we use a testing set

(a data set that was not used in training, but otherwise represents similar data), the

classifier returns similar numbers.

One advantage of using the PHMM as a classifier is the ability to identify partial

matches. This is seen in the testing sets where the observed target sequence is different

than the sequence used when collecting training data. The classifier is able to identify

testing sets that are missing steps in the target sequence or where the duration of the

events in the sequence are altered.

To ensure that the classifier is not simply marking everything as a target sequence,

we also show the result of passing in a unique background testing set. The log-likelihood

ratio value in this case remains non-positive, indicating that it is more likely that the

observed data came from the background model than from the target model.

As was mentioned, the log-likelihood ratio values that are graphed in Figure 4.6 are

dependent on both the likelihood values for the target model and the background model.

while the data for the signals that are a part of the target sequence remain mostly the

same for each data set, the background signals in each are different (in some cases, they

differ greatly). The difference in background signals drive the variation that is seen in

the log-likelihood ratio level for each data set. There is no particular threshold that can

guarantee the presence of the target sequence in the observed data; the threshold must

be set based on the observed conditions in each particular operating area.

The classification process can be continued further by identifying the specific sig-

nals that comprise the target sequence. One algorithm, Viterbi Alignment, uses dy-

namic programming to determine the most probable sequence of states traversed by the

PHMM [12]. Since each match state corresponds to a particular element of the target
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sequence signature, specific signals may be identified as being target signals.

The performance achieved by the PHMM classifier is excellent, particularly when

contrasted to the 31% correct detection rate that was achieved by the linear classifier.

The good performance, coupled with the versatility of being able to detect partial

matches to signatures, shows the PHMM classifier to be ideal for use as the sequence

classifier in the target signal sequence detector.
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5. Conclusion

The primary objective of this work has been to automatically identify in real-time RF

communications that match a target signature predetermined to have a high correlation

to an anticipated action or event. We assume that target RF signals occur in temporal

sequences of signals that can be characterized with a parameterized signature.

The goal in building an automatic detector is to develop a classifier that operates on

observed characteristics (features) of RF signals and yields decisions as to whether the

signals corresponding to these observations match the target signature. Furthermore,

this classifier should be able to easily explain the rationale behind the decisions it

yields. This rationale is useful for operational personnel who must use the output of the

classifier to determine appropriate counteractions. Due to possible physical limitations

that would prevent continuous monitoring of a particular frequency, the classifier must

also be able to operate on sampled data that is limited to being collected only during

windows when the frequency is “visible” to the RF detector.

In order to build such a classifier, we prescribed a list of features in Chapter 2 and

Appendix A that can be used to describe a detected signal. A target signal detection

system uses these features, provided from hardware sensors and/or signal processing

as inputs. We also outlined an architecture for a target signal detection system that

uses these inputs to make decisions as to whether a sequence matching a predetermined

target signature appears in the RF environment.

The final step of the target signal detection process is to run algorithms that operate

on the observed features and do inference on a statistical model to determine whether

a target signature is present in the data. While a linear classifier provides a straight-

forward means of classifying data by defining a linear threshold to separate signals that

match a target signature from those that do not, we showed in Chapter 4 that the data

under consideration are not linearly separable. Accordingly, we considered a multi-layer
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perceptron, which is a weighted sum of features detector that combines multiple layers

of linear classifiers. This approach, however, does not provide decisions for which a

rationale can be easily deduced. Furthermore, neither the linear classifier nor the MLP

provide a means of considering the sequential nature of a target signature in the time

domain. The Profile Hidden Markov Model was finally identified as the best classifica-

tion model due to its ability to detect temporal sequences of signals, and we show that

it succeeds in distinguishing target signal sequences from the RF environment where

the linear classifier fails.

In this document, we also described the process of extracting a feature relevant to

signal classification and used in the implemented system, namely the presence of DTMF

on an observed channel. In Chapter 3, we presented a detailed time-domain approach

to detecting DTMF on an RF channel where physical limitations impose windowing

constraints on the detected signal. This detection approach was implemented in matlab

and shown to provide significant improvement over other classical methods of DTMF

detection.

The detection methods presented in this thesis have been demonstrated to be effec-

tive for detecting signals conforming to signatures of target communication in real-time

in an RF environment.
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Appendix A. Full List of Features

This section provides a list of features that might be useful in identifying target

signatures in the RF environment with this target signal detection system. Inevitably,

there are more features that could have been included on this list, as the options are

limited only by the subjective level of usefulness in discriminating between communica-

tions that match target signature and those that do not. Therefore, this particular list

should be considered non-exhaustive.

Center Frequency The measured center frequency of an observed signal

Bandwidth The measured bandwidth of an observed signal. There are several slightly

different definitions of bandwidth, listed here are a few:

Fractional Power Containment Bandwidth The FCC defines the occupied

bandwidth in rule 2.202 to be the range of frequencies such that the mean

power radiated at frequencies within the range is 99% of the total radiated

power [1]

Null-to-Null Bandwidth The width of the main spectral lobe [1]

Half-Power Bandwidth The width of the interval between the frequencies at

which the spectral density has dropped by half [1]

Received Power The total received power within the specified bandwidth

Transmitted Power The total power at which the transmission was made

Distance The distance from the receiver to the transmitter

AoA The AoA as measured between the receiver and the transmitter, with respect to

some cardinal direction
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Modulation Class Whether the emission is analog or digital; for digital modulation,

which family of modulations the emission corresponds to (i.e., PSK, FSK, ASK,

Quadrature Amplitude Modulation (QAM), etc.)

Modulation Type For analog emissions, indicates whether it is an amplitude or fre-

quency modulated signal. For digital modulations, specifies the type of modulation

within the modulation class (i.e., QAM-16 vs QAM-64)

Symbol Rate For digitally modulated emissions, the rate symbols are being transmit-

ted across the channel

Transmitter Location The location of the transmitter with respect to some global

coordinate system

Receiver Location The location of the receiver with respect to some global coordinate

system

Device Type One-way versus two-way radio, commercial or home-built

Device Manufacturer Who manufactured the device

Time Last Seen Time (with respect to a global clock) that the emission was last

observed

Other Locations Seen Location (with respect to a global coordinate system) that

the emission was last seen

Radio Service Which, if any, radio service does the emission belong to

Licensed or Unlicensed For emissions that are in a licensed radio service, whether

there is a corresponding license that matches with the emission

Regulation Conformance Whether the emission corresponds to regulations associ-

ated with radio service/license or as specified by FCC or ITU regulations for

unlicensed services
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Traffic Type For analog modulation types, is the information being carried voice,

DTMF (or other multi-frequency signaling scheme), or just noise

Mobility Whether the transmitter is stationary or mobile; if it is mobile, whether it

is moving toward, away, or with the receiver

DTMF Key-Press If the transmission is DTMF, the sequence of keys that have been

pressed

Keywords Whether a keyword of interest was transmitted as either voice or data

Speaker Recognition Whether the speaker on a voice channel is a person of interest




	List of Tables
	List of Figures
	List of Algorithms
	List of Acronyms
	Abstract
	Introduction
	Defining the Problem
	Development of the Solution
	Pseudo-code Algorithms in this Text
	Terminology
	Organization

	Signal Detection and Classification System Architecture
	Basic classification problem
	Features
	Low level features
	Higher level features

	Feature selection
	General System Architecture
	Physical Tuners
	Feature Extraction
	Target Signal Detection
	Simple Example
	Implementation
	Implementation of the Physical Tuners Subsystem
	Implementation of the Feature Extraction Subsystem
	Implementation of the Target Signal Detection Subsystem
	Implementation of the Controller and GUI


	Feature Extraction Exemplified Through DTMF Detection
	Overview of DTMF and DTMF Signaling
	Fast and Automatic DTMF Detection
	The Optimal Parameter Vector
	Optimal Amplitude Parameters
	Numerical Solution for Frequency and Phase Parameters
	Gauss-Newton Method
	Step-size Selection
	Full vs. Reduced Parameter Vector

	Determining DTMF vs. non-DTMF
	Empirical Distributions
	Detector Performance
	DTMF Key Identification
	DTMF Detection Algorithm

	Non-Ideal DTMF: Frequency Deviation
	DTMF Feature Extraction Conclusions

	Classification
	Linear Classification
	Linear Classifiers in Radio Frequency Communications
	Computing the Weight Vector
	Example

	Extension to Multiple Layers
	Sequential Nature of Target RF Communication Events
	Profile Hidden Markov Model
	Example with PHMMs

	Conclusion
	Bibliography
	Full List of Features

