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Abstract
IPv6 Compression Techniques
and Performance

Ryan Measel
Advisor: Moshe Kam, Ph. D.

The adoption of IPv6 over its predecessor IPv4 has been a slow process despite that IPv6 offers
many advantages is terms of flexibility, security, and routing in addition to a vastly larger addressing
space. The disadvantage is that IPv6 needs a larger header size as well to provide these features.
A great amount of overhead accumulates for IPv6 transmissions with small packet sizes, such as
network management and real-time traffic. Several header and payload compression techniques
have been proposed to mitigate this effect. In this paper, the various compression techniques are
identified and evaluated. A testbed was devised to further investigate a select set of protocols.
Traffic shaping was used to impose non-ideal network constraints, such as delay, packet loss, and
bit error. It was shown that header compression is highly effective at reducing overhead, especially
for small packet sizes. RObust Header Compression (ROHC) was found to perform the best under
network constraints with the exception of packet reorderings. Payload compressions techniques were
less useful as they require overhead in the form of either a per-packet dictionary or a synchronization

mechanism, and the data payload cannot be previously compressed or encoded.






1. Introduction

Internet Protocol version 4 (IPv4) was the first networking layer protocol to be adopted for wide
use, and has been used by the US military since its inception, over three decades ago. In the 1990s,
it became apparent that IPv4 was incapable of serving the growing needs of network operations and
the Internet. The development of IPv6 began with the objective of replacing and improving upon
IPv4 in areas that include scalability and flexibility. While many concepts were carried over from
IPv4, IPv6 includes a number of new capabilities for improved routing, security, quality of service
(QoS), and mobility, in addition to a vastly increased address space.

On 9 June 2003, the Department of Defense (DoD) Chief Information Officer (CIO) signed a
memorandum outlining the DoD’s goal to ”transition to [Internet Protocol Version 6] IPv6 for all
inter and intra networking across the DoD by FY2008.” However, there was limited progress towards
achieving this goal due to various concerns regarding security, performance, product availability, cost,
and other deterrents. Nonetheless, IPv6 offers features that are of value, and it remains the only
viable replacement for IPv4, the current networking protocol, which will soon run out of address
space. As such, efforts to prepare for IPv6 and optimize its usage are still vital.

A primary concern of IPv6 versus IPv4 is the increased header size. IPv4 headers are 20 bytes
while TPv6 headers are a minimum of 40 bytes. This becomes problematic especially in tactical
radio environments where bandwidth is often very low. For large packets, the difference may be
negligible, but for small packets, such as network diagnostics and situational awareness messages,
the difference can be significant. To address this concern, various header and payload compression
techniques have been proposed by commercial and standards bodies.

The purpose of this work was to assess the available IPv6 compression standards and techniques,
analyze their effectiveness, and identify the conditions and applications for which they are best

suited. The remainder of the document is organized as follows:

e In Chapter 2, a list is provided of standards and protocols corresponding to IPv6 compression.

Commercial offerings and support for these protocols are also discussed.
e Chapter 3 describes the functional operation of the compression techniques.

e Chapter 4 includes an overview of testing for select protocols and the obtained results.



e Finally, conclusions and recommendations concerning the evaluated techniques, including rel-

evant scenarios and applications, are presented in Chapter 5.



2. Identification of IPv6 Compression Techniques

2.1 Standards, Drafts and RFCs

A list of standards and Request For Comments (RFCs) that pertain to IPv6 compression may

be found below along with a short description.

e RFC 2393 [55] - IP Payload Compression Protocol (IPComp).

IPComp provides a framework for implementing payload compression in IP datagrams. It is
intended for communication over slow or congested links. Any compression scheme can be used
as long as it is lossless which implies no information is lost. The compression is performed in

a stateless manner such that packet decompression is independent of other packets.

e RFC 2460 [29] - Internet Protocol, Version 6 (IPv6).

RFC 2460 is the base specification for IPv6 which defines some of the terminology and the

header format.

e RFC 2507 [30] - IP Header Compression.

This document specifies a header compression technique developed for point-to-point com-
munication. The method can be used on IPv6, UDP, TCP, and encapsulated IPv6. It was

designed to be operable on links with high packet-loss rates.

e RFC 2508 [27] - Compressing IP/UDP/RTP Headers for Low-Speed Serial Links.

This document defines a method for Compressing IP/UDP/RTP (CRTP) headers which was
designed specifically for real-time traffic using the RTP protocol on low-speed links. It is

limited to real-time traffic transported over UDP/RTP.

e RFC 3095 [25] - RObust Header Compression (ROHC): Framework and four profiles: RTP,
UDP, ESP, and uncompressed.

ROHC is a header compression technique based on the concept of omitting fields from the
header. This is done via an agreement between the sender and receiver so that both know
which fields are being omitted. ROHC can be applied to many different types of headers,

including but not limited to IPv6. Each supported protocol header has an associated profile



which defines what can be omitted. This document in particular contains profiles for RTP,

UDP, ESP, and uncompressed.

RFC 3173 [54] - IP Payload Compression Protocol (IPComp).

This is an update to the IP Payload Compression Protocol. The protocol is stateless and

lossless. It obsoletes RFC 2393.

RFC 3241 [24] - Robust Header Compression (ROHC) over PPP.

Configuration parameters have to be agreed upon by each end of the ROHC compression over
a PPP link. A series of Network Control Protocols (NCPs) are used by PPP to handle the
negotiation of these parameters. This document defines the configuration both IPv4 and IPv6

for negotiating ROHC parameters on a PPP link.

RFC 3544 [42] - IP Header Compression over PPP.

Configuration parameters have to be agreed upon by each end of the IPHC compression over
a PPP link. A series of Network Control Protocols (NCPs) are used by PPP to handle the
negotiation of these parameters. This document defines both IPv4 and IPv6 configurations for

negotiating IPHC parameters on a PPP link. It obsoletes RFC 2509.

RFC 3545 [43] - Enhanced Compressed RTP (CRTP) for Links with High Delay, Packet Loss

and Reordering.

RFC 3545 defines the Enhanced Compressed RTP (ECRTP) protocol which is an update to
RFC 2508, CRTP. CRTP did not perform well over links with high packet loss and delay.
Several extensions to CRTP were put in place in order to minimize the effects of a constrained
network environment and thereby making it more resilient to packet loss, jitter, and delay.
Similar to CRTP, ECRTP is also limited to real-time UDP/RTP traffic on point-to-point

links.

RFC 3759 [35] - RObust Header Compression (ROHC): Terminology and Channel Mapping,.
RFC 3759 is a clarification of RFC 3095. It provides definitions of logical elements in the
operation of ROHC, such as instances, channels, feedback, and contexts. It also provides
examples of ROHC operation. This document provides the best overview of ROHC.

RFC 3843 [36] - RObust Header Compression (ROHC): A Compression Profile for IP.

This document extends RFC 3095 and provides a specification of an IP only profile for ROHC.



RFC 4362 [37] - RObust Header Compression (ROHC): A Link-Layer Assisted Profile for
IP/UDP/RTP.

This RFC defines another compression profile for IP/UDP/RTP by using functionality of the
link layer to improve the efficiency of the compression. It obsoletes RFC 3242.

RFC 4815 [38] - RObust Header Compression (ROHC): Corrections and Clarifications to RFC
3095.

RFC 4815 provides clarifications and corrections for several RFCs relating to ROHC, including
3095, 3241, 3843, and 4109, in order to prevent misinterpretations and promote interoperability.
RFC 4919 [44] - IPv6 over Low-Power Wireless Personal Area Networks (6LoOWPANSs): Overview,
Assumptions, Problem Statements, and Goals.

This document is an informational RFC that defines Low-Power Wireless Personal Area Net-
works (LoWPANSs) and the advantages of running IPv6 over such networks.

RFC 4944 [47] - Transmission of IPv6 Packets over IEEE 802.15.4 Networks.

RFC 4944 defines and enables link-local IPv6 traffic over LoOWPANs. It provides for mesh-
routing, IPv6 and UDP header compression, and fragmentation over an IEEE 802.15.4 link-

layer.

RFC 4997 [31] - The RObust Header Compression (ROHC) Framework.

RFC 4997 is an explanation and simplification of the Robust Header Compression Framework.
It is not intended to obsolete RFC 3095. Rather, it is meant to complement it and define
the ROHC framework and uncompressed profile separately. It does not modify or update the
framework provided by RFC 3095.

RFC 5095 [22] - Deprecation of Type 0 Routing Headers in IPv6.

RFC 5095 addresses a security vulnerability of IPv6 by deprecating the use of Type 0 Routing
Headers. This updates RFC 2460 and RFC 4294.

RFC 5225 [49] - RObust Header Compression Version 2 (ROHCv2): Profiles for RTP, UDP,

IP, ESP, and UDP-Lite.

RFC 5225 introduces some simplifications to the rules controlling the actions of the compres-

sion endpoints. It expands upon the robustness mechanisms to improve the success rate of



decompression. Furthermore, it specifies compression profiles under the ROHC framework for

RTP/UDP/IP, RTP/UDP-Lite/IP, UDP/IP, UDP-Lite/IP, IP and ESP/IP.

e RFC 5795 [53] - The RObust Header Compression (ROHC) Framework.

RFC 5795 obsoletes RFC 4997. It is an explanation and simplification of the Robust Header
Compression Framework. It is not intended to obsolete RFC 3095. Rather, it is meant to
compliment it and define the ROHC framework and uncompressed profile separately. It does

not modify or update the framework provided by RFC 3095.

e draft-ietf-6lowpan-hc-07 [34] - Compression Format for IPv6 Datagrams in 6LoWPAN Net-

works.

This document is a draft for an RFC which will update RFC 4944. Tt discusses updated
compression options for transmitting IPv6 datagrams over IEEE 802.15.4 wireless networks.
Stateful address compression using pre-shared network prefixes is permitted, but the draft

does not specify methods for distributing such prefixes.

e draft-ietf-6lowpan-nd-09 [56] - Neighbor Discovery Optimization for Low-power and Lossy

Networks.

This document is a draft for an RFC which will update RFC 4944. It proposes changes to
IPv6 Neighbor Discovery that better suit LoWPANSs, and covers distribution and maintenance

of network prefixes.

e IEEE 802.15.4 [7] - IEEE Standard for Information technology- Telecommunications and in-
formation exchange between systems- Local and metropolitan area networks- Specific require-
ments Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifi-

cations for Low-Rate Wireless Personal Area Networks (WPANSs),”

The IEEE 802.15.4 standard specifies the physical and MAC layer for wireless personal area

networks (WPAN). 6LoWPAN is based on this standard.

2.2 Commericial Offerings

2.2.1 Ericsson

Ericsson developed a new protocol based off of CRTP called RObust Checksum-based header

COmpression (ROCCO) [57]. ROCCO is a robust header compression scheme targeted at real-time



audio and video streams over cellular links. Primarily, this was intended to facilitate the use of
Voice-over IP.

While ROCCO [39] was developed as an alternative to CRTP, it is similar to ECRTP in that it
employs checksums for header decompression validation. It also has some unique features such as
additional feedback packet types and various compression profiles. Optional feedback types include
acknowledgement of an updated context, an indicator for gaps in the packet stream, and an update
on link loss characteristics. Compression profiles were developed for both voice and video.

Work ceased on this protocol in 2000 and was incorporated into the initial draft for ROHC [2].

2.2.2 Nokia

More recently, Nokia has published research on multi-hop compression [58] for sensor networks.
The compression schemes that have been discussed (i.e. ROHC, ECRTP) are link based compression
schemes. This is costly for the wireless nodes forwarding traffic since every node has to decompress
and recompress each packet before it is forwarded along. A new mechanism was developed to allow

for compression of a packet from end to end which improves the multi-hop performance.

2.2.3 Effnet AB

Effnet AB is a Swedish company that develops commercial header compression technologies [5].
They actively research and develop header compression techniques for commercial offerings and
offer four products: Effnet IPHC, Effnet CRTP, Effnet ROHC, and Effnet HC-Sim. Effnet IPHC
is compliant with RFC 2507 as well as 3GPP. Effnet CRTP is compliant with RFC 2508 and can
optionally support ECRTP. Effnet ROHC is compliant with RFC 3095 and RFC 4815 and offers
support for 3GPP2, MBMS, and VoIP flow compression. Effnet HC-Sim is a simulator designed
specifically for testing IP header compression algorithms. Notably, in 2005, QUALCOMM licensed
Effnet IPHC for use in its CDMA2000 and WCDMA chipsets [6].

2.2.4 Cisco

Cisco offers both RTP and TCP header compression for their routers [11]. The compression can
be enabled over process-switched paths, fast-switched paths, and Cisco Express Forwarding-switched
(CEF-switched) paths. The routers support RFC 1144, RFC 2507, and RFC 2508. RFC 2508 is the
basis of CRTP which can be used for IPv6 traffic.



2.2.5 Microsoft

Windows Server supports IP Header Compression (IPHC) for Point-to-Point Protocol (PPP).
This feature implements RFC 2507 and RFC 3544, the specifications for IPHC and IPHC over PPP

respectively. This compression scheme ”is not a configurable option for IPv6” [8].

2.2.6 6LoWPAN Implementations

Several commercial solutions exist for 6LoWPAN implementation. For example, Arch Rock [17]
and Sensinode [20] offer wireless sensor hardware platforms along with 6LoWPAN protocol stacks
that support the original RFC 4944. Atmel [18] offers similar platforms with software that supports
early versions of the draft-ietf-6lowpan-hc update to RFC 4944. Open source operating systems for
low-power sensor networks, such as Contiki [10] and TinyOS [15], offer 6LoWPAN support to a wide
variety of hardware platforms and are also based on early versions of the drafts that will update

RFC 4944.



3. Operation of IPv6 Compression Techniques

3.1 Header Compression

Header compression is the process by which extraneous parts of the protocol headers are com-
pressed in order to reduce the overhead on packet transmissions. Often, this compression implies
omission as not all fields in the header are required for successful transmission. It is possible to define
a header compression scheme for any protocol in the transport, network, or MAC layers. IPv6 is a
network layer protocol and is of particular interest with regards to header compression due to its
large header sizes.

Many researchers have implemented header compression in simulation only [45][48]. Others have
deployed various types of header compression schemes using commercial implementations of Robust
Header Compression (ROHC) [52]. There are also examples of header compression techniques being
employed on different standards and network configurations like Mobile WiMAX [59], NEMO [51]
and mesh networks [41].

While many header compression schemes have been developed, only a few were chosen to be
evaluated. Namely, CRTP, ECRTP, and ROHC were selected based on their maturity, level of

commercial integration, and perceived future value.

3.1.1 Compression RTP (CRTP)

CRTP is an extrapolation of the compression framework specified in RFC 2507 [30] which is
compatible with both IPv4 and IPv6. The framework differentiates between two classes of network
trafficc. TCP and non-TCP. CRTP specifies IP/UDP/RTP as a subclass of the non-TCP class.
While it is possible to compress just one of the protocols instead of all three, the resulting size
of the compressed header is between 2-4 bytes regardless. There is substantially more to gain by
compressing the transport and network layer headers together.

The compression is setup across a single link with a compressor at the sender and a decompressor
at the receiver. A session context is established for each stream. A session context is characterized by
the IP source, IP destination, UDP source port, UDP destination port, and the RTP synchronization
source (SSRC) field. Each session context is assigned an identifier number and a sequence number.

The limit on the number of contexts is negotiated by the compressor and decompressor. A session
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state is established that contains the portions of the headers which will remain constant and delta
values for the fields that change at a constant rate. A packet header can then be reconstructed by
the decompressor by adding the first order differential (the delta values) to the uncompressed header
values.

CRTP defines five packet types:

e FULL_HEADER contains all the necessary information to construct the uncompressed header
as well as the context identifier and sequence number. It is used for synchronizing the com-

pressor and decompressor.

e COMPRESSED_UDP is a packet with a compressed IP/UDP header of 6 bytes and possibly
additional uncompressed headers. This is used when a field in the RTP header that is normally
constant changes or when there is no RTP header. If the RTP SSRC has changed, then this

packet will also update the session context.

e COMPRESSED_RTP is a packet with a compressed IP/UDP/RTP header. The minimum size
of this header is 2 bytes. It also includes a new delta value for any field that has changed by

some value other than the previous specified delta value.

e CONTEXT_STATE is a packet used for feedback sent from the decompressor to the compres-
sor. It is sent when the decompressor receives a compressed packet with a sequence number
that has changed by more than 1 which indicates a packet loss has occurred. The context is
labeled as corrupted and the decompressor will discard all compressed packets related to that

context until a FULL_HEADER is received to resynchronize the sequence number.

e COMPRESSED _NON_TCP is a packet with a compressed IP/UDP header and without dif-
ferential coding. This packet type can only be used for IPv6 since it has no ID field. It is more
resilient to packet loss than the COMPRESSED_UDP since it doesn’t use differential coding.

CRTP performs best on links with short delay and no packet reordering. A long delay on the link
is problematic since all compressed packets that are received after a packet is loss are discarded until
the context can be resynchronized. A resynchronization takes at least one Round Trip Time (RTT)
during which a CONTEXT_STATE is sent by the decompressor and a FULL_HEADER is returned
by the compressor. This can result in many discarded packets especially on a high bandwidth link.

The same will occur for a packet reordering, which can happen if the link is tunneled over an IP
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network. The decompressor would receive a packet with a sequence number incremented greater
than 1 which will trigger a resynchronization even though no packets have been lost.
It should also be noted that the use of feedback in the scheme implies a duplex link. CRTP can

be used over a half duplex link, but the performance would be severely degraded.

3.1.2 Enhanced Compressed RTP (ECRTP)

ECRTP [43] has been designed in order to address some of the issues of CRTP. It is intended to
increase the robustness of CRTP against packet loss and packet reordering so that the compression
scheme can be applied for links over tunnels and virtual circuits. Two new features were added to
achieve this.

First, some packet loss can be tolerated by packaging context updates in COMPRESSED_UDP
packets. Differential and absolute RTP values can be included in the packet in order to maintain
synchronization. This exploits the fact that CRTP fails not when a packet is lost but when the
next packet arrives. If that next packet contains the relevant context update, then the delta values
can be added to the previous values multiple times. The context will not be corrupted and no
resynchronization will be required.

Second, the compressor will add a checksum of the header when a UDP checksum has not been
included. The decompressor can use this checksum to ensure the validity of a context update even
after a packet loss. The UDP checksum is normally required to validate the header decompression
after a packet loss when applying a context update. This would not be possible when UDP checksums
are disabled. The addition of a header checksum applied by the compressor will allow for header
validation even in the absence of the UDP checksum.

These additional features do add to the size of the compressed header. Therefore, ECRTP is

only more efficient than CRTP on high loss links or those prone to packet reordering.

3.1.3 RObust Header Compression (ROHC)

ROHC was designed specifically for point-to-point, wireless links that suffer from various network
constraints including packet loss, high delay, and bit error. In this sense, it can be viewed as a
replacement for CRTP which performs poorly in such scenarios.

RFC 3759 ”Terminology and Channel Mapping Examples” [35] explains the overall structure of
the protocol and the environment it was designed to operate within. Basic environment concepts can

be broken down into the terms: network element, network interface, and logical channel. A network
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element (commonly called a node) is an entity that engages in communication over a network
interface with other network elements. Each network element in a network may contain one or more
network interfaces which it may communicate over, each network interface having its own unique
IP identity. At this point, it is easiest to visualize a TCP/IP router with multiple ports (Figure
3.1). The router is a network element, and each of its ports is a network interface with a unique
IP addresses. When the router communicates over each one of its ports, information is transmitted
across one of potentially many logical channels. Each logical channel can be considered a point-
to-point logical connection provided by the lower link lever protocol (e.g., Point-to-Point Protocol
(PPP), Ethernet, Wi-Fi). These logical channels may actually be shared physical channels such
as in Ethernet where a single port of a router may be physically connected to several neighboring

routers, or wireless domains where a broadcast medium essentially connects many routers.

Network Element (Router)

” <

IP Interface IP Interface
(Port) o (Port)

|]auuey)d
|]suueyd
|]auueyd
|]auuey)d

Figure 3.1: A network element with many logical channels per interface (adapted from [35]).

The terms instance, compressor, and decompressor are rather straightforward. An ROHC in-
stance performs either header compression or decompression. The ROHC compressor accepts full
IP packets as input and returns compressed packets, while the decompressor accepts compressed

packets and outputs the decompressed version. An ROHC channel denotes the logical directed con-
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nection from a compressor to a decompressor operating on separate ends of a logical channel. The
information flow consists of compressed packets sent from the compressor to the decompressor. The
separately defined ROHC feedback channel denotes the information flow in the opposite direction
from decompressor to compressor for purposes of feedback to control compression levels and states,
etc. This separation is done to promote flexibility for uni- and bi-directional links. If header compres-
sion is desired along both directions of a bi-directional logical channel, two compressor-decompressor

pairs must be started, one for each direction (Figure 3.2).

r Y N e Y )

gical Channel Between Aand B 4|

) NS
ROHC Channel  j

ROHC ROHC

/l—
Router P comp K [ROHC Feedback | Decomp P Router

Interface : Interface
A (Port) I N (Port) B
ROHC | —ROHCChamnel }  gopc

Decom| Com
P K__ROHC Feedback P

7 Lo

. AN J \_ AN J

Figure 3.2: An example logical bi-directional channel with compression.

Compression and decompression are performed ”underneath” the IP layer, on a per-link basis.
In a sense, a compressed header itself is not routable because it must be decompressed before being
passed up to the IP layer. However, if several routers with ROHC-enabled links are chained together,
it is certainly feasible to route an IP packet along the multi-hop route by successively compressing
and decompressing the header. It is also certainly possible and intended, especially in cellular and
satellite networks, that only a subset of logical channels (particularly low bandwidth channels) are
ROHC-enabled.

A router switches packets based on their IP address which is stored in the IP header of a packet.
This is the same portion of the header that IPv6 header compression techniques operate on. For this
reason, an unmodified router would be unable to route a compressed header under ROHC. At the
initialization of a compressed link, the sender and receiver agree on portions of the header to omit.

If a router was not part of this agreement and received a packet with a compressed header, it would
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be unable to successfully parse the header and route it. However, switches can successfully forward
packets with compressed ROHC headers since they operate at the link layer. A switch routes frames
based on the MAC address in the frame header so it does not matter what has been compressed or
omitted in the network or transport layer headers.

Furthermore, compression of a multi-hop route must be conducted over each single-hop link
individually. The transmitter-receiver pair of routers corresponding to each single-hop link must

agree upon a compression format/state before compression takes place over that respective link.

3.2 Packet Payload Compression

Packet compression schemes encode the entire packet payload using any of number of available
data compression algorithms. For the purposes of IP packets, it would be necessary to employ a
lossless compression scheme to ensure exact recovery of the original packet. The alternative is lossy
compression where it is only required to recover an approximation of the original data. This allows
lossy compression to achieve higher compression ratios but, to do so, it must assume none of original
data is critical. Certainly, this is an assumption that cannot be made for packets since they may
contain any type of information. Additionally, if the compressed payload contains headers for upper

level protocols, then the exact header data must be recovered.

3.2.1 Dictionary Compression

Most lossless compression algorithms are built using a hash function. The input data is analyzed
and mapped into a dictionary. This is done by looking for common sequences which can be assigned
a shorter index in the dictionary. The data can then be decompressed by referencing the index
of the dictionary. The two main encoding algorithms are Huffman coding and arithmetic coding.
The former is faster but has poorer results for data with high entropy. Meanwhile, arithmetic
coding produces almost optimal compression ratios for any type of data [13]. Many more encoding
algorithms have been developed and optimized for specific types of data. Adaptive coders are also
used with compression algorithms which can improve performance as more data is compressed.

High compression ratios can be gained through using compression on the packet payloads, but
it is not without limitations [3]. The dictionaries require a substantial amount of memory. Also,
the dictionaries must be synchronized for proper decompression at the receiver, and the task of

encoding and decoding the data can be computationally intensive depending on the type of data
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and the encoding scheme employed. In addition, it becomes useless if a higher layer has already

compressed or encrypted the data.

3.2.2 Packet-by-Packet Dictionary Compression

One approach to overcome the problems associated with storing and synchronizing dictionaries
is using a packet-by-packet algorithm [1]. A new dictionary is generated for each packet. The
dictionary is then included with the compressed data in the packet. By including a new dictionary
for each packet, it is not required to store a common dictionary on the sender or receiver and there
is nothing to synchronize. Additional overhead would be incurred by including the dictionary with
the compressed packet. It is unknown whether this outweighs the overhead incurred by feedback
mechanisms used for dictionary synchronization when they are stored locally. Hewlett Packard
introduced a form of packet-by-packet compression called HP PPC which can be run on HP routers
[1]. It incorporates packet-by-packet compression and run length encoding. Run length encoding
checks for sequences of a single character repeated multiple times. It replaces the sequence with a

single character and the number of times in which it occurs.

3.2.3 Guess-Table-Based Compression

Another approach to packet compression is a guess-table-based compression algorithm [1]. The
algorithm uses preceding bytes to predict what the next byte will be. At the sender, if the guess is
correct, then the byte is omitted from the transmission. At the receiver, if the guess is correct, then
the byte is reinserted. Both the sender and receiver use the same guess algorithm to ensure lossless
compression. The Predictor Compression Algorithm is an example of guess table compression in
conjunction with a running dictionary. This algorithm uses less processing and can therefore be run
on links with a higher speed since it imposes less processing delay. Due to its reliance on a running
dictionary, the algorithm still suffers from memory limitations and the necessity for synchronization.

It is also available on some HP routers.

3.2.4 Delayed Dictionary Compression

Delayed dictionary compression [46] is an alternative implementation of the dictionary based
compression. It is intended to address the issue of packet drops and packet reorderings. The
construction of the dictionary is delayed by some arbitrary amount selected by the compressor. By

doing this, compressed packets do not depend on any preceding packets sent within the delay. This
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built-in buffer time allows the scheme to be more robust against drops and reordering but it is not

completely tolerant.

3.2.5 Packet Compression in Sensor Networks

A packet compression scheme has been proposed for embedded wireless sensor networks as well
[40]. The overall goal is saving power for the node. This is accomplished through compressing packets
and transmitting less which, in turn, saves power. It is a dictionary approach with synchronization
feedback mechanisms. It is debatable how useful such a scheme would be as the downside of a
dictionary based compression algorithm is the high use of computation and memory, neither of

which a traditional sensor node has.
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4. Evaluation of Compression Techniques

To evaluate and analyze the protocols of interest, a wireless testbed was used for performing
over-air tests as well as traffic shaping on network flows of varying types. A testbed consisting of
two wireless nodes was constructed to conduct experiments with selected compression techniques.
The emerging ROHC protocol was focused on since CRTP is already an established protocol and
ROHC is designed to surpass it. As stated in RFC 3545 (ECRTP), "ROHC is expected to be the
preferred compression mechanism over links where compression efficiency is important” [43].

The overall layout of the wireless testbed is shown in Figure 4.1. The two end nodes are HP
Compaq tc4200 Tablet PCs which are running Ubuntu 9.04. The nodes are connected over two
network interfaces, wireless IEEE 802.11b and wired IEEE 802.3 Ethernet. The wireless connection

is on an ad-hoc network, while the wired connection runs through a dedicated network bridge.

IEEE 802.3 Ethernet
Wired Connection

| Network Bridge

Ubuntu 9.04
| netem
™ e
Node 1 Node 2
Ubuntu 9.04 I U — Ubuntu 9.04
ROHC v1.3.0 j » l ROHC v1.3.0
L N
IEEE 802.11

Wireless Connection

Figure 4.1: A graphical representation of the wireless testbed.

A network bridge is a transparent switch on the data link layer (layer 2 of the OSI model). In
this instance, the bridge has two interfaces and forwards packets received on one interface to the

other. Not only does this provide a convenient monitoring point for the traffic on the link, but it also
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allows an opportunity to perform traffic shaping. Traffic shaping is the process of imparting some
characteristic on the network traffic across a link. The bridge also runs Ubuntu 9.04 and netem [14],
a tool for traffic shaping. netem is able to emulate network properties such as packet loss, delay,
reordering, and duplication. For bandwidth rate control, a token bucket filter is used. The wired
connection is used for all tests involving traffic shaping while the wireless link is used for experiment

validation and practical testing.

4.1 ROHC Implementation

To test ROHC, a set of libraries developed by the French Space Agency (CNES), Thales Alenia
Space (TAS), and Viveris Technologies was utilized. This effort [23] is an update to a deprecated
sourceforge implementation [4]. The libraries contain the functions necessary for a full ROHC
implementation. The code is open source under the GPL2+ license. All results presented below

were achieved using version 1.3.0 of the libraries which was released on March 22, 2010.
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Figure 4.2: ROHC implementation.
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The implementation is shown in Figure 4.2 in reference to the OSI model. It is a user space
library which provides an API for accessing packets that have been queued by the kernel packet
filter. Packets on the network stack can be accessed before they are sent out of the network interface.
The packets can then be filtered out or altered and re-injected back onto the network stack in the
kernel. Similarly, packets that are received can be filtered or altered and handed back up the stack
for processing by the application. This functionality can be exploited to apply header compressions
to outbound packets and decompression to inbound packets according to the ROHC specification.

The main advantage to doing these operations in user space, as opposed to in the kernel, is
that it will allow for increased flexibility and ease of programming. If the filter was coded in the
kernel, the kernel would need to be recompiled for each change of the code. Additionally, it would be
more difficult to debug the code as segmentation faults do not lend themselves to straight forward
solutions.

The main disadvantage of implementing ROHC in the user space is that the queue time for a
packet will increase. A packet is generated by an application and then passed onto the network
stack. The packet is given a transport header (i.e. TCP, UDP) and then an IP header (i.e., IPv6).
At this point, it must be grabbed off of the stack and taken into user space. The header will be
compressed and then passed back onto the stack in the kernel. This is assuredly slower than the
packet simply remaining in the kernel. Even so, the issue is not troublesome for two reasons. First,
every packet sent or received that must be compressed is offset by the same amount which results
in a net effect of shifting the whole flow by a small delta. Second, the time for the packet to move
to user space and back is still negligible compared to the high transmission times of low bandwidth
channels. On high bandwidth channels where this delay may become a problem, header compression

would not likely be implemented.

4.2 Implementation Validation

To test the implementation, a constant stream of 40 byte UDP packets was generated using
MGEN [34] to mimic a low bandwidth real-time stream with no packet losses and a constant delay.
Both an uncompressed stream and a compressed stream using the ROHC IPv6/UDP compression
profile are shown in Figure 4.3.

The uncompressed packets are all comprised of a 40 byte IPv6 header, 8 byte UDP header, and

40 byte data payload for a total of 88 bytes.
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Figure 4.3: Compressed and uncompressed total packet size.

The packets compressed by ROHC begin slightly larger than the uncompressed packets. The
first three packets are larger due to an increased header size of 50 bytes as confirmed by Figure 4.4.
These are IR packets which are used while the protocol is in the IR state. This state is intended
to develop the static parts of the compression context at the decompressor which is necessary to
initialize a stream and to recover after a failure. In this case, the stream has just started so the
static context is being initialized. After these first three packets, the compression begins and the
header size is reduced to 3 bytes. This is a reduction of 45 bytes from the uncompressed header.
Overall, the original stream was compressed to 55.5% of the original size for these 25 packets. If
no losses are assumed, the compression ratio would approach 0.489 as the number of packets in the
stream approaches infinity. The compression ratio is defined as the total size of the compressed
packet divided by the total size of the corresponding uncompressed packet.

Clearly, there is a minor trade-off associated with the negotiation of the context state. There
is overhead incurred by the IR packets. For ROHC, it typically takes three packets to establish
the context which is additional 8-16 bytes of overhead. Accordingly, if a transmission was short
enough (less than five packets), it would not warrant establishing a context to apply compression.

The setup overhead becomes negligible for any amount of traffic past this level. The link context
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Figure 4.4: ROHC header size.

20

25

does not expire either, so even if the transmission is short, it is still worthwhile to establish the

compression if it is anticipated that the link will be used in the future.

4.3 Protocol Testing

ROHC is built on a framework that is extendable to any protocol for which a profile is developed.

We investigated some of the more common protocols and their interaction with header compression.

4.3.1 1IPv6
Table 4.1: IPv6 header format.
bits 0-3 4-11 12-31 32-47 48-55 56-63
0 Ver. Traffic Class Flow Label Payload Length | Next Header | Hop Limit
64 Source Address
192 Destination Address
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Table 4.2: Description of IPv6 header fields.

Field Description Size (bytes)
Characterization Various parameters associated with the flow | 8
Source Address IP address of the destination 16
Destination Address | IP address of the destination 16

] \ Total Size \ 40

4.3.2 User Datagram Protocol (UDP)

UDP is a transport layer (OSI model, layer 4) protocol. It is connectionless which means there is
no handshaking process involved between communicating agents, unlike TCP. It does not guarantee
reliability or packet ordering such that datagrams may be out of order, duplicated, or lost without
notice. Furthermore, no congestion control is performed to scale back the transmit rate when the

network is over loaded.

Table 4.3: UDP header format.

bits 0-15 16-31
0 Source Port Number Destination Port Number
32 Length Checksum

Table 4.4: Description of UDP header fields.

Field Description Size (bytes)
Source Port UDP port of the source 2
Destination Port | UDP port of the destination 2
Length Length of the packet header and data payload 2
Checksum 1’s complement of 16-bit words across the packet | 2

’ \ Total Size 8

UDP is extremely useful for a myriad of network applications which do not depend on reliable
transfer. All real-time traffic, such as video streaming and Voice-over-IP (VoIP), falls into this cat-
egory, as traffic that is lost or delayed is not useful for immediate playback. Many network utilities

and management protocols also utilize UDP including Domain Name System (DNS), Dynamic Host
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Configuration Protocol (DHCP), Simple Network Management Protocol (SNMP), and Routing In-
formation Protocol (RIP). The compression ratio achieved for IPv6/UDP packets over a normal
wireless connection can be found in Figure 4.5. Transmitted over IPv6, UDP packets have a total

header size of 48 bytes.
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Figure 4.5: ROHC compression ratio for UDP/IPv6.

4.3.3 User Datagram Protocol Lite (UDP-Lite)

UDP Lite was developed for error-prone environments. Normal UDP packets are discarded if
they have an invalid checksum which can be caused by a single bit error anywhere across the packet.
UDP Lite allows for the scope of the checksum to be limited to the header. This is useful for
applications where damaged payloads are preferable to discarded packets, such as VoIP. Otherwise,
it operates the same as UDP and has the same header size where the length field has been replaced
by the checksum coverage. The length field is able to be excluded because the information can be
extracted from the other headers on the datagram.

Since UDP Lite has the same header size and the same operation as UDP with the exception of



Table 4.5: UDP-Lite header format.

bits

0-15

16-31

Source Port Number

Destination Port Number

32

Checksum Coverage

Checksum

Table 4.6: Description of UDP-Lite header fields.

Field Description Size (bytes)
Source Port UDP port of the source 2
Destination Port UDP port of the destination 2
Checksum coverage | Length covered by the checksum 2
Checksum 1’s complement of 16-bit words across the length | 2
defined by the checksum coverage
| Total Size 3

how the checksum is calculated, ROHC compresses it the same as it would normal UDP. Therefore,

Figure 13 may be referenced for the compression ratio of UDP Lite over a wireless link as well.

4.3.4 Real-time Transport Protocol (RTP)

RTP is an application layer protocol used for streaming real-time media, such as VoIP, videos,

and video conferencing. RTP is used in conjunction with UDP. It enables stream synchronization

through timestamps and sequence numbering and also indicates format of encapsulated media.

Table 4.7: RTP header format.

bits 0-1 2 3 4-7 8 9-15 16-31
0 Ver. P X CcC M PT Sequence Number
32 Timestamp
64 SSRC Identifier
96 | CSRC Identifiers (optional)

Figure 4.6 shows the compression ratio for a RTP/UDP/IPv6 stream with no additional con-

catenated streams (12B RTP header). On top of IPv6 and UDP, RTP packets have a total header

size of 60 bytes.




Table 4.8: Description of RTP header fields.
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Field Description Size (bytes)
Characterization Various parameters associated with the flow 2
Sequence Number Sequence number of the packet 2
Timestamp The time value used for stream synchronization 4
4

SSRC Identifier

An identifier for the stream

CSRC Identifier (optional) | The identifier numbers for streams that should be

—
=~
Nt

concatenated onto the current stream

| Total Size | 12 (16, 20, ...) |
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Figure 4.6: ROHC compression ratio for RTP/UDP /IPv6.
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4.3.5 Internet Control Message Protocol Version 6 (ICMPv6)

ICMPv6 is a network layer protocol used for diagnostics and error reporting. Error reporting
includes messages such as time exceeded (TTL expired), destination unreachable, and packet too
big among others. Informational messages can also be sent using ICMPv6 for pings, neighbor
advertisements/solicitations, and router advertisements/solicitations. ICMPv6 is sent over IPv6 as

a header extension.

Table 4.9: ICMPv6 header formats.

bits 0-7 8-15
0 Type Code
16 Checksum

Table 4.10: Description of ICMPv6 header fields.

Field Description Size (bytes)
Type Type of message: error or informational 1
Code Type dependent 1

Checksum | 1’s complement of 16-bit words across the length | 2
of the header

’ \ Total Size \ 4

The ICMPv6 protocol compression was tested using pings. Figure 4.7 shows the compression
ratio for a ICMPv6/IPv6 packet. On top of IPv6, ICMPv6 packets have a total header size of 44

bytes.

4.3.6 Protocols Compared

Figure 4.8 shows all of the aforementioned protocols combined onto a single plot. The RTP/UDP/IPv6
stream achieves the greatest compression ratio because the RTP/UDP /IPv6 packets have the largest
header (60 bytes). The UDP and ICMPv6 streams have nearly the same compression ratio curve
due to their relatively close total header sizes which are 48 and 44 bytes, respectively.

The figure shows encouraging results for ROHC compression on normal (non-lossy) wireless links.
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At low payload sizes, a substantial compression ratio can be achieved for all of the tested protocols.
Even at large payload sizes near normal the Maximum Transmission Unit (MTU), there is still an
appreciable gain from the compression.

A quick clarification must be made concerning the interpretation of the compression ratio plots.
It is true that for all profiles, a small packet size leads to an increased compression ratio. This is
intuitive since the header size remains constant and is independent of the size of the payload. As the
payload size decreases, the header becomes an increasingly large percentage of the overall packet.
This indicates that compressing the header will have a greater effect for small packets. Even so,
it does not imply that it is preferred for an application to send small packets. Total overhead will
always be minimized by sending the largest payload allowed. This always conserves bandwidth more

so than fragmenting a packet and compressing the headers.

4.4 Performance Under Network Constraints

4.4.1 Packet Loss

Packet loss refers to the event that a packet transmission fails to reach its destination. In
a wireless environment, packet loss can occur for numerous reasons including channel interface,
physical obstruction, and multi-path fading among others. In this case, none of the packet is
received, so the data must be resent or skipped. This is problematic for CRTP since a loss is not
detected until the next packet arrives. If the loss occurs in a burst, it is possible many packets will
have been lost before the decompressor knows about it. At that point, the context state will have
to be reestablished, causing the failed decompression of several more packets in the process.

In the presence of packet loss, only a slight increase in overhead was observed for ROHC. This
seemed counter-intuitive at first, but closer inspection of the operation of the protocol revealed its
resilience [44]. Initially, the compression channel is opened in unidirectional mode. Once the first
packet is received by the decompressor, it responds with a request to transition into optimistic mode.
The purpose of the optimistic mode is to maximize compression efficiency while limiting the amount
of traffic sent via the feedback channel. The feedback is only used to send error recovery messages
which are necessary after a context invalidation. It is important to note that the context is not
invalidated after every lost or damaged packet. It is possible for lower layers to catch and discard
erroneous packets. Also, it is possible for a packet to be damaged without corrupting the checksum

or the compressed header. In this latter scenario, the packet will still be decompressed and passed
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to the upper layers. This results in sparse usage of the feedback channel and minimal overhead.

ROHC was designed to withstand packet loss over wireless links. Static fields of the header never
change so they may be decompressed regardless of lose packets. Furthermore, ROHC allows for the
change of the differential fields to be applied multiple times. This means ROHC is most prone to
decompression failures when the packet is received but the compressed header is corrupted.

In experiments, ROHC performed as well in a lossy environment (< 20% loss) as in an ideal
environment. Essentially, it was still able to operate appropriately for levels of loss where the data
itself is still useful. Normally, once a link is experiencing more than 5% to 10% loss, applications
will begin to break. ROHC is not a reliable protocol. It is only meant to compress the link, not
provide recovery mechanisms or data assurance. Therefore, if necessary, loss has to be handled by

one of the other link protocols.

4.4.2 Bit Errors

A bit error occurs when a single bit is altered in the presence of noise. The noise is caused by a
multitude of sources in a wireless channel. Bit errors pose more of a problem for ROHC than packet
loss since a packet can be received in error. The packet header will fail to decompress if the bit error
occurs in the header. Meanwhile, the stream context will only be invalidated when a bit error occurs
in the checksum for the ROHC compressed header. When this occurs, a negative acknowledgement
(NACK) must be sent to the compressor to reestablish the context. Fortunately, due to the small
size of the compressed header, it is unlikely bit errors will frequently occur in the header. In testing,
only a few NACKs were observed even at relatively high BER Rates of le4 to 1eb (1 error per 1,000
to 10,000 bits). At higher bit error rates, ROHC will frequently fail to decompress. Though, at
those levels of bit error rate, uncoded data payloads will already be unusable regardless of whether

the header is correct or not.

4.4.3 Delay

Packet delay is the time necessary for a packet to get from the transmitter to the receiver.
ROHC is mostly tolerant packet delay since feedback is used sparingly even while in bidirectional
mode. Theoretically, packet delay can be problematic for compression schemes which rely more
heavily feedback. This is because high delay will result in many packets being sent before the first
one is received. If an error occurs or a resynchronization is required, all the packets transmitted

in the interim will be unable to be decompressed. Fortunately, ROHC responds well to packet
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loss as previously discussed. Feedback is not significantly employed. Positive acknowledgments
are sent for significant context updates in O-mode and all context updates in R-mode. Negative
acknowledgments are sent when the decompressor is out of sync which is indicated by successive

packets failing to decompress.

4.4.4 Packet Reordering

Packet reordering occurs when a packet with a newer sequence number arrives at the receiver
before a packet with an older sequence number. Reordering normally only occurs on larger wired
networks and virtual circuits where it is possible for a packet to take different paths to reach the
receiver. On a wireless point-to-point link, where protocols such as ROHC and CRTP are intended
to be used, packet reordering does not occur. Neither ROHC nor CRTP are tolerant to packet
reordering. Both protocols would assume the unreceived, older packet has been lost. Fortunately,
ECRTP was developed specificially with this purpose in mind. For networks in need of header

compression where packet reordering is a possibility, ECRTP is the preferred protocol.

4.4.5 Bandwidth

The main goal of all network compression protocols is to reduce overhead in order to improve
goodput. Goodput is the rate of useable data being sent. Alternatively, it can be defined as the
application level throughput since it does not include overhead from network protocols. Reducing
overhead through compression improves the goodput for a constant network throughput. To exem-
plify this, Figure 4.9 shows a series of plots comparing the goodput of compressed and uncompressed
UDP streams for packets of size 40B, 100B, 500B, and 1400B. The goodput is plotted against the
bandwidth (theoretical maximum throughput) of the channel. Each point represents an average of
several trials.

For each tested bandwidth and packet size, the compressed stream had a higher goodput relative
to the uncompressed. Coinciding with our compression ratio curves, the gain in goodput is substan-
tially greater for smaller packet sizes. This may be seen by comparing the 40B packet size to the
1400B packet size. Compressing the packet brings the goodput closer to the theoretical limit which

is the channel bandwidth, even at low bandwidths such as 9.6kb and 64kb.
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5. Conclusions and Recommendations

5.1 Application and Scenario Characterization

Since the compression achieved for a packet is relative to the size of the packet, it is necessary
to characterize the traffic which will be sent over the compressed link. The expected compression
ratio for a given application can be determined by looking at the distribution of the packet size for
an application.

Many applications have nearly constant packet sizes. Such applications commonly perform net-
work diagnostics and management or situation awareness. The packet sizes rarely change since the
packet format is well defined and the same fields are included for each packet. A list of some com-
mon network applications is shown in Table 5.1 along with their average packet size, incorporated

headers, and the expected compression ratio.

Table 5.1: Compression ratio for common network protocols.

Application Headers Average Packet | Expected
Incorporated | Size (bytes) Compression Ratio

DHCP IPv6, UDP 102.21 0.7071

DNS 1Pv6, UDP 390.68 0.8997

ICMPv6

- Error Messages IPv6, ICMPv6 | variable variable

- Echo Request IPv6, ICMPv6 | 4 0.1667

- Echo Reply IPv6, ICMPv6 | 4 0.1667

- Router Solicitation IPv6, ICMPv6 | 12 0.2857

- Router Advertisement IPv6, ICMPv6 | 12 0.2857

- Neighbor Solicitation 1Pv6, ICMPv6 | 20 0.3750

- Neighbor Advertisement | IPv6, ICMPv6 | 20 0.3750

- Multicast Listener 1Pv6, ICMPv6 | 32 0.4737

Many user applications have traffic flows with higher variance packet sizes. An example of such a
flow is an internet session where the user visits various web pages and downloads images and text. An
internet session was captured, and its packet size distribution is shown in Figure 5.1. Interestingly,
the packet sizes are either very small (< 50B) or very large (> 1400B). The small packets are

mostly a mixture of HT'TP calls and handshakes that occur when using the TCP protocol for HTTP
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requests. The large packets are delivering the images and other media requested when accessing a
page. To find the expected compression ratio in this scenario, a summation of the compression ratio
multiplied by the probability density at each discrete packet size was calculated. For this example,

the compression ratio was 0.6562.
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Figure 5.1: Probability density of the packet size for a http web session.

Another example of traffic with variable packet sizes is real-time traffic, such as VoIP and video
streaming. This data is time sensitive such that packets are sent at time intervals required by the
data payload contained. Accordingly, packets are not always filled to the MTU. The packet size
distribution is shown in Figure 5.2 for a five minute VoIP call. A large percentage of the packets
are less than 100B such that compression ratio achieved for this call was 0.5964.

For both applications with low variance packet size and high variance packet size, appreciable
compression ratios can be achieved. This is due to the fact that payloads are not always filled up to
the MTU. Smaller packets are used to convey short messages, updates, or time sensitive information.

Only file transfers are going to employ primarily large packet sizes. Header compression is a useful
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Figure 5.2: Probability density of the packet size for a VoIP call.

asset for reducing overhead and conserving bandwidth for IPv6 network traffic.

5.2 Conclusions

5.2.1 Header Compression Schemes

It has been shown that header compression is useful for reducing overhead, especially for traffic
with low average packet sizes. By reducing overhead to improve goodput, header compression
converses bandwidth which is most useful on low bandwidth links where high goodput is a top
priority. The benefits of header compression on faster links is debateable.

CRTP, ECRTP, and ROHC were investigated and evaluated due to their maturity, current level
of integration, and perceived utility in future applications. CRTP was intended to work over point-
to-point links with short delays and no packet reordering. It performs well in such scenarios and has
already been employed commercially in this manner. ECRTP was designed to allow for compression
over IP tunnels and virtual circuits where there is both long delays and packet reordering. The
enhancements employed in ECRTP do increase the overhead, yet the compression savings remains

non-trivial. ROHC was designed for point-to-point wireless links so that it would be robust against
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packet loss while achieving the maximum level of compression efficiency.

Furthermore, ROHC performs well in the face of various network constraints. It is generally
unaffected by packet loss, packet delay, and jitter. It is most susceptible to bit errors which can
corrupt the compressed header. Even so, in environments with high bit error rate, the data payload
will already be corrupted regardless of the success of the header decompression. It is suggested that
ROHC should be used over CRTP or ECRTP for point-to-point links. ROHC, similar to CRTP,
cannot tolerate packet reordering, so ECRTP should still be used in the case where the link travels

over an IP tunnel.

5.2.2 Packet Payload Compression Schemes

Packet compression schemes certainly can save significant amounts of bandwidth when they are
properly utilized. Yet, similar to header compression algorithms, either full context must be included
for each packet or a synchronization mechanism is required. In addition, packet compression requires
both processing and memory capacity while being rendered useless if the data has already been com-
pressed by a higher layer or encrypted. This essentially makes it unusable for video streams, audio
streams, other compressed files, and anything encrypted which severely constrains its applications.

HP recommends that packet compression only be employed for streams or packets that are
less than 768kbps [1]. This is due to the processing delay incurred by compressing the payload of a
packet. The processing time increases as the size of the packet increases. For slower links, this is not a
problem as the transmission times are high. When the processing time exceeds the transmission time
on the link, then the compression algorithm will actually begin to decrease bandwidth. Additionally,
it is shown in [3] that the compression ratio for packet compression does yield positive gain until
the packet size is over 200 bytes.

From these observations, it is possible to see that there is only a window of packet sizes in which
packet payload compression would be beneficial. The upper boundary is set by the processing time
relative to the transmission time. The processing could become a limiting factor for field devices
with low memory and computational powers. The lower threshold is set at the point at which the
compression ratio is falls blow unity. It is harmful to operate with packet compression under this
limit as the compression savings is less than the overhead incurred by sending or synchronizing the
dictionary.

It appears that packet payload compression is not a viable option. The conditions imposed are

too restricting for it to be useful in practice. The highest gains should be achieved through the use
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of header compression. If the data itself needs to be compressed, it is most likely better suited to

perform the action at a high layer.
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